Glucose, a major energy source in cellular metabolism, has a significant role in cell growth. The increase in glucose uptake is a distinguishing hallmark in cancer cells. A key step in glucose utilization is the transport of glucose to the cancer cells for supplying their additional energy. The glucose transporter (or GLUT) family is a membrane protein which facilitates the uptake of glucose in most cancer cell types. Given the increased glucose level in cancer cells and the regulatory role of GLUTs in glucose uptake, it is required to combine both experimental and theoretical studies to develop new methods to monitor cell proliferation. Herein, for the first time, a new strategy was proposed to evaluate the cell proliferation of HT-29 based on glucose consumption in the presence of resveratrol (RSV) as an anticancer agent. A hybrid nanocomposite of carbon nanofibers and nitrogen-doped graphene quantum dots was used to design an enzymatic sensor for the selective and sensitive determination of glucose in cancer cells. The results obtained from the voltammetric technique were compared with the conventional colorimetric assay. A good correlation was observed between the proliferation rate and glucose utilization by cancer cells. As it was observed, RSV induces a decrease in glucose consumption, indicating lower glucose uptake efficiency for HT-29 cells. Molecular docking studies reveal that RSV can block the interaction of glucose with the GLUT family. This is one of the possible mechanisms for the decrease of glucose level followed by the reduction of cell proliferation in the presence of RSV. Compared with traditional methods, in vitro electrochemical techniques benefit from simple, nontoxic, sensitive and low-cost detection assays and hence serve as a novel tool to pursue the growth inhibition of cancer cell in response to anti-cancer agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2021.109804DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
cell proliferation
16
glucose
16
cancer cell
12
glucose uptake
12
glucose cancer
12
anti-cancer agents
8
cancer
8
molecular docking
8
glucose utilization
8

Similar Publications

The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.

View Article and Find Full Text PDF

Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1.

Onco Targets Ther

January 2025

Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada.

The gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1.

View Article and Find Full Text PDF

Adipokines in Breast Cancer: Decoding Genetic and Proteomic Mechanisms Underlying Migration, Invasion, and Proliferation.

Breast Cancer (Dove Med Press)

January 2025

Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine - ETHIANUM, Heidelberg, 69115, Germany.

Background: Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood.

Methods: In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3).

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke causing significant morbidity and mortality. Previously clinical treatments for ICH have largely been based on a single pathophysiological perspective, and there remains a lack of curative interventions. Following the rupture of cerebral blood vessels, blood metabolites activate resident immune cells such as microglia and astrocytes, and infiltrate peripheral immune cells, leading to the release of a series of inflammatory mediators.

View Article and Find Full Text PDF

The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!