Screening and identification of Theileria annulata subtelomere-encoded variable secreted protein-950454 (SVSP454) interacting proteins from bovine B cells.

Parasit Vectors

State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.

Published: June 2021

Background: Theileria annulata is a protozoan parasite that can infect and transform bovine B cells, macrophages, and dendritic cells. The mechanism of the transformation is still not well understood, and some parasite molecules have been identified, which contribute to cell proliferation by regulating host signaling pathways. Subtelomeric variable secreted proteins (SVSPs) of Theileria might affect the host cell phenotype, but its function is still not clear. Therefore, in the present study, we explored the interactions of SVSP454 with host cell proteins to investigate the molecular mechanism of T. annulata interaction with host cells.

Methods: The transcription level of an SVSP protein from T. annulata, SVSP454, was analyzed between different life stages and transformed cell passages using qRT-PCR. Then, SVSP454 was used as a bait to screen its interacting proteins from the bovine B cell cDNA library using a yeast two-hybrid (Y2H) system. The potential interacting proteins of host cells with SVSP454 were further identified by using a coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays.

Results: SVSP454 was transcribed in all three life stages of T. annulata but had the highest transcription during the schizont stage. However, the transcription level of SVSP454 continuously decreased as the cultures passaged. Two proteins, Bos Taurus coiled-coil domain 181 (CCDC181) and Bos Taurus mitochondrial ribosomal protein L30 (MRPL30), were screened. The proteins CCDC181 and MRPL30 of the host were further identified to directly interact with SVSP454.

Conclusion: In the present study, SVSP454 was used as a bait plasmid, and its prey proteins CCDC181 and MRPL30 were screened out by using a Y2H system. Then, we demonstrated that SVSP454 directly interacted with both CCDC181 and MRPL30 by Co-IP and BiFC assays. Therefore, we speculate that SVSP454-CCDC181/SVSP454MRPL30 is an interacting axis that regulates the microtubule network and translation process of the host by some vital signaling molecules. Identification of the interaction of SVSP454 with CCDC181 and MRPL30 will help illustrate the transformation mechanisms induced by T. annulata.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196448PMC
http://dx.doi.org/10.1186/s13071-021-04820-4DOI Listing

Publication Analysis

Top Keywords

ccdc181 mrpl30
16
interacting proteins
12
svsp454
10
theileria annulata
8
variable secreted
8
proteins
8
proteins bovine
8
bovine cells
8
host cell
8
transcription level
8

Similar Publications

Screening and identification of Theileria annulata subtelomere-encoded variable secreted protein-950454 (SVSP454) interacting proteins from bovine B cells.

Parasit Vectors

June 2021

State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.

Background: Theileria annulata is a protozoan parasite that can infect and transform bovine B cells, macrophages, and dendritic cells. The mechanism of the transformation is still not well understood, and some parasite molecules have been identified, which contribute to cell proliferation by regulating host signaling pathways. Subtelomeric variable secreted proteins (SVSPs) of Theileria might affect the host cell phenotype, but its function is still not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!