Histone citrullination: a new target for tumors.

Mol Cancer

Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.

Published: June 2021

As the main protein components of chromatin, histones play central roles in gene regulation as spools of winding DNA. Histones are subject to various modifications, including phosphorylation, acetylation, glycosylation, methylation, ubiquitination and citrullination, which affect gene transcription. Histone citrullination, a posttranscriptional modification catalyzed by peptidyl arginine deiminase (PAD) enzymes, is involved in human carcinogenesis. In this study, we highlighted the functions of histone citrullination in physiological regulation and tumors. Additionally, because histone citrullination involves forming neutrophil extracellular traps (NETs), the relationship between NETs and tumors was illustrated. Finally, the clinical application of histone citrullination and PAD inhibitors was discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192683PMC
http://dx.doi.org/10.1186/s12943-021-01373-zDOI Listing

Publication Analysis

Top Keywords

histone citrullination
20
histone
5
citrullination
5
citrullination target
4
target tumors
4
tumors main
4
main protein
4
protein components
4
components chromatin
4
chromatin histones
4

Similar Publications

Neutrophil Extracellular Traps Contribute to the Disease Severity of Dengue Virus Infection.

J Arthropod Borne Dis

June 2024

Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, Pelita Harapan University, Tangerang, Indonesia.

Background: The spectrum of dengue infection ranges from asymptomatic or mild to severe disease. The pathogenic mechanisms are not fully understood. A viral infection can induce the neutrophil extracellular traps (NETs), and the excessive NETs lead to increased vascular permeability, coagulopathy, and platelet dysfunction, a hallmark of severe dengue.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are increased in rheumatoid arthritis-associated interstitial lung disease.

Respir Res

January 2025

Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.

Background: Neutrophil extracellular trap (NET) formation has been implicated as a pathogenic mechanism in both rheumatoid arthritis (RA) and interstitial lung disease (ILD). However, the role of NETs in RA-associated ILD (RA-ILD) and the mechanisms driving NET formation remain unclear. This study aimed to assess the involvement of NETs in RA-ILD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps.

Toxicol Appl Pharmacol

January 2025

College of Veterinary Medicine, Southwest University, Chongqing 400715, China. Electronic address:

T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented.

View Article and Find Full Text PDF

Background: C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms.

Results: In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP.

View Article and Find Full Text PDF

Neutrophils and neutrophil extracellular traps (NETs) contribute to thrombosis and hyperinflammation in myeloproliferative neoplasms (MPN). High-density neutrophils (HDNs) and low-density neutrophils (LDNs) have recently been characterized as distinct neutrophil sub-populations with distinct morphological and functional properties. We aim to study the kinetics of NET formation and inhibition with interferon-α (IFNα) in neutrophils derived from patients with MPN as compared to matched healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!