Temperature is a key indicator of infection and disease, however, it is difficult to measure at a cellular level. Nanoparticles are applied to measure the cellular temperature, and enhancement of the stability and reliability of the signal and higher biocompatibility are demanded. We have developed fluorescent polymeric nanoparticles loaded with temperature-sensitive units (as rhodamine B) and internal reference units (as coumarin) for imaging and ratiometric sensing of the cellular temperature in the physiological range. The fluorescence signal of the nanoparticles was stable in the bio-environment and the ratiometric sensing strategy could overcome the concentration effect of nanoparticles. The nanoparticles were endocytosed by cells and partially presented in mitochondria. The fluorescence intensity ratio of rhodamine B and coumarin using nanoparticles showed good linear correlations in buffer solutions, cell suspensions, and imaging of living cells. Using the fluorescent polymeric nanoparticles, the change of temperature of cells during influenza virus infection could be individually monitored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.05.175DOI Listing

Publication Analysis

Top Keywords

fluorescent polymeric
12
measure cellular
8
cellular temperature
8
polymeric nanoparticles
8
ratiometric sensing
8
nanoparticles
7
temperature
5
polymeric nanoparticle
4
nanoparticle ratiometric
4
ratiometric temperature
4

Similar Publications

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Performance of four thermophilic bacteria for primary sludge hydrolysis: Sludge disintegration and hydrolase activities.

Bioresour Technol

January 2025

College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China. Electronic address:

Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed.

View Article and Find Full Text PDF

An integrated and multifunctional homemade cell sensor platform based on Si-d-CQDs and CRISPR-Cas12a for CD31 detection during endothelial-to-mesenchymal transition.

Talanta

January 2025

Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell research, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Clinical molecular diagnostic center, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China. Electronic address:

Endothelial-to-mesenchymal transition (EndMT) plays a crucial role in the initiation and progression of atherosclerosis and various disease processes. Cluster of differentiation 31 (CD31) is a significant marker in EndMT. Detecting CD31 is essential for early-stage monitoring of EndMT and diagnosing atherosclerosis.

View Article and Find Full Text PDF

ECoGScope: An integrated platform for real-time Electrophysiology and fluorescence imaging.

Biosens Bioelectron

January 2025

Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:

In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!