A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disruption of biofilms and killing of Burkholderia cenocepacia from cystic fibrosis lung using an antioxidant-antibiotic combination therapy. | LitMetric

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The resulting chloride and bicarbonate imbalance produces a thick, static lung mucus. This mucus is not easily expelled from the lung and can be colonised by bacteria, leading to biofilm formation. CF lung infection with Burkholderia cepacia complex (BCC), particularly the subspecies B. cenocepacia, results in higher morbidity and mortality. Patients infected with BCC can rapidly progress to "cepacia syndrome", a fatal necrotising pneumonia. The aim of this study was to identify whether a combination therapy (CT) of selected antioxidants and antibiotics significantly disrupts B. cenocepacia biofilms and to determine the optimum CT level for treatment. Using controlled in vitro spectrophotometry, colony-forming unit and microscopy assays, three antioxidants (N-acetylcysteine [NAC], glutathione and vitamin C) and three antibiotics (ciprofloxacin, ceftazidime and tobramycin) were screened and assessed for their ability to disrupt the early and mature biofilms of six B. cenocepacia CF isolates. A combination of NAC and ciprofloxacin produced a statistically significant biofilm disruption in all strains tested, with growth inhibition (>5-8 log) observed when exposed to 4890 or 8150 μg/mL NAC in combination with 32 or 64 μg/mL ciprofloxacin. NAC-mediated biofilm disruption may be aided by the acidic pH of NAC at higher concentrations. This study showed that NAC is an effective disruptor that reduces the necessity for high concentrations of antibiotic. Further research will focus on the host toxicity and efficacy in ex vivo CF models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2021.106372DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
combination therapy
8
biofilm disruption
8
disruption biofilms
4
biofilms killing
4
killing burkholderia
4
cenocepacia
4
burkholderia cenocepacia
4
cenocepacia cystic
4
lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!