Pachyonychia congenita (PC) is a genetic disorder of keratin that presents with nail dystrophy, painful palmoplantar keratoderma, and other clinical manifestations. We investigated the genotype‒structurotype‒phenotype correlations seen with mutations in keratin genes (keratin [K]6A, K6B, K6C, K16, K17) and utilized protein structure modeling of high-frequency mutations to examine the functional importance of keratin structural domains in PC pathogenesis. Participants of the International PC Research Registry underwent genetic testing and completed a standardized survey on their symptoms. Our results support previous reports associating oral leukokeratosis with K6A mutations and cutaneous cysts, follicular hyperkeratosis, and natal teeth with K17 mutations. Painful keratoderma was prominent with K6A and K16 mutations. Nail involvement was most common in patients with K6A mutation and least common in those with K6C mutation. Across keratin subtypes, patients with coil 2B mutations had the greatest impairment in ambulation, and patients with coil 1A mutations reported more emotional issues. Molecular modeling demonstrated that hotspot missense mutations in PC largely disrupted hydrophobic interactions or surface charge. The former may destabilize keratin dimers/tetramers, whereas the latter likely interferes with higher-order keratin filament formation. Understanding the pathologic alterations in keratin structure improves our knowledge of how PC genotype correlates with clinical phenotype, advancing insight into disease pathogenesis and therapeutic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922998 | PMC |
http://dx.doi.org/10.1016/j.jid.2021.03.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!