The current manuscript describes two molecules that were designed against PPARγ and GPR40 receptors. The preparation of the compounds was carried out following a synthetic route of multiple steps. Then, the mRNA expression levels of PPARγ, GLUT4, and GPR40 induced by compounds were measured and quantified in adipocyte and β-pancreatic cell cultures. The synthesized compound 1 caused an increase in the 4-fold expression of mRNA of PPARγ regarding the control and had a similar behavior to the pioglitazone, while compound 2 only increased 2-fold the expression. Also, the compound 1 increased to 7-fold the GLUT4 expression levels, respect to the control and twice against the pioglitazone. On the other hand, the 1 increase 3-fold GPR40 expression, and compound 2 had a minor activity. Besides, 1 and 2 showed a moderated increase on insulin secretion and calcium mobilization versus the glibenclamide. Based on the molecular docking studies, the first compound had a similar conformation to co-crystal ligands into the binding site of both receptors. The poses were docked keeping the most important interactions and maintaining the interaction along the Molecular Dynamics simulation (20 ns). Finally, compound (1) showed an antihyperglycemic effect at 5 mg/kg, however at higher doses of 25 mg/kg it controlled blood glucose levels associated with feeding intake and without showing the adverse effects associated with insulin secretagogues (hypoglycemia). For these reasons, we have concluded that molecule 1 acts as a dual PPARγ and GPR40 agonist offering a better glycemic control than current treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.174244DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
pparγ gpr40
8
expression levels
8
compound increased
8
expression compound
8
compound
6
expression
5
synthesis molecular
4
docking dynamic
4
dynamic simulation
4

Similar Publications

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

The uncertain ferroptosis-related role of berberine in prostate cancer was explored using network pharmacology methodology. Integration of ferroptosis targets in prostate cancer from the Genecard database and berberine targets from the Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases revealed 17 common targets. Among these, 10 hub genes, including CCNB1, CDK1, AURKA, AR, CDC42, ICAM1, TYMS, NTRK1, PTGS2, and SCD, were identified.

View Article and Find Full Text PDF

The formation of gastric precancerous-lesions (GPLs) has been identified as a critical step in tumorigenesis, and patients with GPLs have an increased risk of gastric cancer. Magnolol is the primary biphenolic compound in Magnolia officinalis. It possesses various pharmacological properties, such as cardioprotective and neuroprotective properties, and inhibit tumor growth.

View Article and Find Full Text PDF

This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!