The involvement of metabolic reprogramming has been suggested to contribute to the pathophysiology of rheumatoid arthritis (RA). Glycolysis is enhanced in synovial cell metabolism in RA patients. Inhibitors of glycolysis are known to have anti-inflammatory effects. But, changes in the metabolism of normal synovial membranes or synovial cells during the early stages of inflammation remains unknown. Moreover, there are still many aspects of inflammatory signaling pathways altered by glycolysis inhibitors, that remain unclear. In this study we found that, in normal, non-pathological bovine synovial cells, most of ATP synthesis was generated by mitochondrial respiration. However, during the early of stages inflammation, initiated by lipopolysaccharide (LPS) exposure, synovial cells shifted to glycolysis for ATP production. The glycolysis inhibitor 2-deoxyglucose (2DG) reversed LPS induced increases in glycolysis for ATP production and suppressed the expression of inflammatory cytokines and proteolytic enzymes. 2DG suppressed the phosphorylation of the transcription factor cAMP response element binding protein (CREB) enhanced by LPS. Treatment with a CREB inhibitor reversed the expression of LPS-stimulated inflammatory cytokines and proteolytic enzymes. This study showed that changes in metabolism occur during the early stages of inflammation of synovial cells and can be reversed by 2DG and signaling pathways associated with CREB phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2021.108962DOI Listing

Publication Analysis

Top Keywords

synovial cells
20
early stages
12
stages inflammation
12
cells early
8
creb phosphorylation
8
changes metabolism
8
signaling pathways
8
glycolysis atp
8
atp production
8
inflammatory cytokines
8

Similar Publications

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by chronic inflammation of the synovium and progressive joint damage. Fibroblast-like synoviocytes (FLSs) exhibit excessive proliferative and aggressive phenotypes and play a major role in the pathophysiology of RA. Previous studies have confirmed the pathologic role of L-selectin in cell adhesion and migration.

View Article and Find Full Text PDF

This study attempted to explore the molecular mechanism of Epimedium herb (EH) on rheumatoid arthritis (RA) treatment. We employed network pharmacology, molecular docking, and HPLC analysis to investigate the molecular mechanisms underlying the efficacy of EH in treating RA. To assess the efficacy of EH intervention, RA fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis (CIA) mouse models were utilized.

View Article and Find Full Text PDF

Objectives: To investigate the role of the BNIP3-PI3K/Akt signaling pathway in mediating the inhibitory effect of Decoction (BYHWT) on mitochondrial autophagy in human synovial fibroblasts from rheumatoid arthritis patients (FLS-RA) cultured under a hypoxic condition.

Methods: Forty normal Wistar rats were randomized into two groups (=20) for daily gavage of BYHWT or distilled water for 7 days to prepare BYHWT-medicated or control sera. FLS-RA were cultured in routine condition or exposed to hypoxia (10% O) for 24 h wigh subsequent treatment with IL-1β, followed by treatment with diluted BYHWT-medicated serum (5%, 10% and 20%) or control serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!