A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction. | LitMetric

Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction.

Water Sci Technol

Department of Chemical Engineering and Metallurgy, University of Sonora, Rosales and Luis Encinas Blvd., Hermosillo, Sonora, Mexico E-mail:

Published: June 2021

This study compares sulfate-reduction performance in an anaerobic sludge with different carbon sources (ethanol, acetate, and glucose). Also, the toxic effect of copper was evaluated to assess its feasibility for possible acid mine drainage (AMD) treatment. Serological bottles with 1.5 g VSS/L and 150 mL of basal medium (0.67 g COD/g SO at a 7-8 pH) were used to determine the percentage of electron equivalents, maximum specific methanogenic (SMA), and sulfide generation activities (SGA). The copper effect was evaluated in a previously activated sludge in batch bioassays containing different concentrations of copper (0-50 mg/L), 3 gVSS/L, and 150 mL of basal medium (0.67 g COD/g SO). Carbon source bioassays with glucose obtained the best results in terms of the SGA (1.73 ± 0.34 mg S/g VSS•d) and SMA (10.41 mg COD-CH/g VSS•d). The electron flow in the presence of glucose also indicated that 21.29 ± 5.2% of the metabolic activity of the sludge was directed towards sulfidogenesis. Copper toxicity bioassays indicated that a considerable decline in metabolic activity occurs above 10 mg/L. The 20%IC, 50%IC, and 80%IC were 4.5, 14.94, and 35.31 mg Cu/L. Compared to the other carbon sources tested, glucose proved to be a suitable electron donor since it favors sulfidogenesis. Finally, copper concentrations above 15 mg/L inhibited metabolic activity in the toxicity bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2021.163DOI Listing

Publication Analysis

Top Keywords

metabolic activity
12
carbon source
8
acid mine
8
mine drainage
8
drainage amd
8
amd treatment
8
anaerobic sludge
8
carbon sources
8
copper evaluated
8
150 basal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!