Shaping the Color and Angular Appearance of Plasmonic Metasurfaces with Tailored Disorder.

ACS Nano

4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Published: June 2021

AI Article Synopsis

  • The optical properties of plasmonic nanoparticle ensembles are influenced by particle shape, size, and arrangement, which affects their far-field optical characteristics.
  • A disorder model combining "frozen-phonon" and correlated disorder helps investigate the effects of spatial ordering on these properties through experimental and computational methods.
  • The study uses a Fourier microscopy setup to analyze plasmonic metasurfaces, revealing that disorder parameters significantly shape the optical appearance, and the dipole approximation effectively predicts the far-field response.

Article Abstract

The optical properties of plasmonic nanoparticle ensembles are determined not only by the particle shape and size but also by the nanoantenna arrangement. To investigate the influence of the spatial ordering on the far-field optical properties of nanoparticle ensembles, we introduce a disorder model that encompasses both "frozen-phonon" and correlated disorder. We present experimental as well as computational approaches to gain a better understanding of the impact of disorder. A designated Fourier microscopy setup allows us to record the real- and Fourier-space images of plasmonic metasurfaces as either RGB images or fully wavelength-resolved data sets. Furthermore, by treating the nanoparticles as dipoles, we calculate the electric field based on dipole-dipole interaction, extract the far-field response, and convert it to RGB images. Our results reveal how the different disorder parameters shape the optical far field and thus define the optical appearance of a disordered metasurface and show that the relatively simple dipole approximation is able to reproduce the far-field behavior accurately. These insights can be used for engineering metasurfaces with tailored disorder to produce a desired bidirectional reflectance distribution function.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c02538DOI Listing

Publication Analysis

Top Keywords

plasmonic metasurfaces
8
metasurfaces tailored
8
tailored disorder
8
optical properties
8
nanoparticle ensembles
8
rgb images
8
disorder
6
shaping color
4
color angular
4
angular appearance
4

Similar Publications

Organic Metasurfaces with Contrasting Conducting Polymers.

Nano Lett

January 2025

Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.

View Article and Find Full Text PDF

Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.

View Article and Find Full Text PDF
Article Synopsis
  • Diverse analytical techniques are needed to study microplastics (MPs) since current methods struggle to detect smaller sizes, particularly those under 5 μm.
  • The study introduces a new method called MicroMetaSense, which uses metal-enhanced fluorescence to detect a wide range of MPs at extremely low concentrations, achieving a sensitivity of 183-205 femtograms.
  • This approach is cost-effective, efficient, and significantly improves detection capabilities, marking a significant advancement in monitoring microplastics in both lab and environmental samples.
View Article and Find Full Text PDF

The increasing demand for controlling electromagnetic waves has led to the construction of a variety of metasurface absorbers with different functionalities. In this Letter, we designed a kind of single-layer metasurfaces with delicately designed hybrid magnetic meta-atoms (HMMAs), which can be operated as perfect absorbers (PAs) for the electromagnetic wave incident at a specified direction, but at the mirror symmetric direction, the nearly total reflection is achieved. This remarkable nonreciprocal phenomenon arises from the time-reversal symmetry (TRS) breaking nature of magnetic surface plasmon as well as the lattice Kerker effect due to the interaction of HMMAs in the single-layer metasurfaces.

View Article and Find Full Text PDF

Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays─Creating Guided Modes for Enhanced Directionality.

ACS Nano

December 2024

Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, NL 1098XG Amsterdam, The Netherlands.

Phosphor-converted micro-light emitting diodes (micro-LEDs) are a crucial technology for display applications but face significant challenges in light extraction because of the high refractive index of the blue pump die chip. In this study, we design and experimentally demonstrate a nanophotonic approach that overcomes this issue, achieving up to a 3-fold increase in light extraction efficiency. Our approach involves engineering the local density of optical states (LDOS) to generate quasi-guided modes within the phosphor layer by strategically inserting a thin low-index spacer in combination with a metasurface for mode extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!