Trypan blue dye exclusion-based cell viability measurements are highly dependent upon image quality and consistency. In order to make measurements repeatable, one must be able to reliably capture images at a consistent focal plane, and with signal-to-noise ratio within appropriate limits to support proper execution of image analysis routines. Imaging chambers and imaging systems used for trypan blue analysis can be inconsistent or can drift over time, leading to a need to assure the acquisition of images prior to automated image analysis. Although cell-based autofocus techniques can be applied, the heterogeneity and complexity of the cell samples can make it difficult to assure the effectiveness, repeatability and accuracy of the routine for each measurement. Instead of auto-focusing on cells in our images, we add control beads to the images, and use them to repeatedly return to a reference focal plane. We use bead image features that have stable profiles across a wide range of focal values and exposure levels. We created a predictive model based on image quality features computed over reference datasets. Because the beads have little variation, we can determine the reference plane from bead image features computed over a single-shot image and can reproducibly return to that reference plane with each sample. The achieved accuracy (over 95%) is within the limits of the actuator repeatability. We demonstrate that a small number of beads (less than 3 beads per image) is needed to achieve this accuracy. We have also developed an open-source Graphical User Interface called Bead Benchmarking-Focus And Intensity Tool (BB-FAIT) to implement these methods for a semi-automated cell viability analyser.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.13037DOI Listing

Publication Analysis

Top Keywords

focal plane
12
reference focal
8
viability measurements
8
trypan blue
8
cell viability
8
image
8
image quality
8
image analysis
8
return reference
8
plane bead
8

Similar Publications

Two types of arteriopathies, arteriomegaly and aneurysms, frequently develop at diverse locations in vertebrobasilar dolichoectasia patients: A retrospective analysis and a meta-analysis.

J Clin Neurosci

January 2025

Department of Neurovascular Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Neurosurgery, Seijinkai Shimizu Hospital, 11-2 Yamadanakayoshimicho, Nishikyo-ku, Kyoto, Japan.

Background: Past studies have reported that vertebrobasilar dolichoectasia (VBD) patients may develop similar arteriopathies other than the vertebrobasilar system. However, the details of these VBD-related arteriopathies are still unclear.

Methods: We retrospectively enrolled patients diagnosed with VBD at two stroke centers in Japan between January 2012 and December 2023.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

Purpose Of Review: The rhomboid intercostal and subserratus plane (RISS) block is an effective, safer alternative for managing postoperative acute pain following abdominal surgeries. The RISS block offers several advantages over traditional approaches, including reduced incidence of puncture-related complications, lower rates of systemic opioid consumption, and more consistent analgesic coverage of lower thoracic dermatomes.

Recent Findings: Despite a favorable safety profile, the RISS block carries potential risks, such as pneumothorax and local anesthetic systemic toxicity, particularly when long-acting anesthetics such as bupivacaine or ropivacaine are used.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!