Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eye blinks are influenced by external sensory and internal cognitive factors, as mainly shown in the visual domain. In previous studies, these factors corresponded to the time period of task-relevant sensory information and were often linked to a motor response. Our aim was to dissociate the influence of overall sensory input duration, task-relevant information duration, and the motor response to further understand how the temporal modulation of blinks compares among sensory modalities. Using a visual and an auditory temporal judgment task, we found that blinks were suppressed during stimulus presentation in both domains and that the overall input length had a significant positive relationship with the length of this suppression (i.e., with the latency of the first blink after stimulus onset). Importantly, excluding the influence of the overall sensory input duration we could show that the duration of task-relevant input had an additional influence on blink latency in the visual and the auditory domain. Our findings further suggest that this influence was not based on sensory input but on top-down processes. We could exclude task difficulty and the timing of the motor response as driving factors in the blink modulation. Our results suggest a sensory domain-independent modulation of blink latencies, introduced by changes in the length of the task-relevant, attended period. Therefore, not only do blinks mark the timing of sensory input or the preparation of the motor output, but they can also act as precise indicators of periods of cognitive processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196427 | PMC |
http://dx.doi.org/10.1167/jov.21.6.7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!