Anthelmintic overuse and failure to implement methods preventing the development and spread of anthelmintic resistance (AR) have led to an alarming increase of resistant ovine trichostrongylids worldwide. The aim of the present study was to determine whether the routine anthelmintic treatment strategy was effective, to obtain insights into the frequency of AR in trichostrongylids of sheep in Austria, and to determine the presence of different trichostrongylid genera. On 30 sheep farms, the faecal egg count reduction test (FECRT) was performed with the Mini-FLOTAC technique in two consecutive studies. In study 1, only fenbendazole and moxidectin were tested, while different compounds and products were used in study 2. Overall, 33 treatment groups were formed: 11 groups were treated with benzimidazoles (fenbendazole and albendazole), 2 groups with avermectins (ivermectin, doramectin), 18 groups with moxidectin, and two groups with monepantel. Reduced efficacy was detected in 64%, 100%, 28% and 50% of these groups, respectively. The most frequently detected genus in larval cultures was Haemonchus, which had been barely detected in Austria previously, followed by Trichostrongylus. Multispecific resistance of trichostrongylids in Austria seems to be on the rise and H. contortus was detected unexpectedly frequently in comparison to previous studies. There is an urgent need to develop efficient communication strategies aimed at improving the engagement of farmers and veterinarians in sustainable parasite control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194391PMC
http://dx.doi.org/10.1051/parasite/2021048DOI Listing

Publication Analysis

Top Keywords

multispecific resistance
8
trichostrongylids austria
8
groups
6
resistance sheep
4
trichostrongylids
4
sheep trichostrongylids
4
austria
4
austria anthelmintic
4
anthelmintic overuse
4
overuse failure
4

Similar Publications

Programmable Circular Multivalent Nanobody-Targeting Chimeras (mNbTACs) for Multireceptor-Mediated Protein Degradation and Targeted Drug Delivery.

Angew Chem Int Ed Engl

December 2024

Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.

Multispecific therapeutics hold significant promise in drug delivery, protein degradation, and cell recruitment to address clinical issues of tumor heterogeneity, resistance, and immune evasion. However, their modular engineering remains challenging. We developed a targeted degradation platform, termed multivalent nanobody-targeting chimeras (mNbTACs), by encoding diverse nanobody codons on a circular template using DNA printing technology.

View Article and Find Full Text PDF

A multispecific antibody against SARS-CoV-2 prevents immune escape in vitro and confers prophylactic protection in vivo.

Sci Transl Med

October 2024

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies.

View Article and Find Full Text PDF

Patient-specific vascularized tumor model: Blocking monocyte recruitment with multispecific antibodies targeting CCR2 and CSF-1R.

Biomaterials

January 2025

Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. Electronic address:

Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are fusions of therapeutic drugs and antibodies conjugated by a linker, designed to deliver a therapeutic payload to cells expressing the target antigen. By delivering the highly cytotoxic agent directly to cancer cells, ADCs are designed to enhance safety and broaden the therapeutic window. Recently, ADCs have demonstrated promising efficacy in various solid tumors and are rapidly expanding their indications.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a significant global health burden, emphasizing the need for innovative treatment strategies. 95% of the CRC population are microsatellite stable (MSS), insensitive to classical immunotherapies such as anti-PD-1; on the other hand, responders can become resistant and relapse. Recently, the use of cancer vaccines enhanced the immune response against tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!