Ensembles of composite quantum states can exhibit nonlocal behavior in the sense that their optimal discrimination may require global operations. Such an ensemble containing N pairwise orthogonal pure states, however, can always be perfectly distinguished under an adaptive local scheme if (N-1) copies of the state are available. In this Letter, we provide examples of orthonormal bases in two-qubit Hilbert space whose adaptive discrimination require three copies of the state. For this composite system, we analyze multicopy adaptive local distinguishability of orthogonal ensembles in full generality which, in turn, assigns varying nonlocal strength to different such ensembles. We also come up with ensembles whose discrimination under an adaptive separable scheme require less numbers of copies than adaptive local schemes. Our construction finds important application in multipartite secret sharing tasks and indicates toward an intriguing superadditivity phenomenon for locally accessible information.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.210505DOI Listing

Publication Analysis

Top Keywords

adaptive local
16
multicopy adaptive
8
discrimination require
8
copies state
8
adaptive
5
local
4
discrimination
4
local discrimination
4
discrimination strongest
4
strongest two-qubit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!