Behaving like atomically precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered hybrid organic-inorganic lead halide perovskites (HOIPs) have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These strong interactions suggest the possibility of larger excitonic complexes like trions and biexcitons, which are hard to study numerically due to the complexity of the layered HOIPs. Here, we propose and parametrize a model Hamiltonian for excitonic complexes in layered HOIPs and we study the correlated eigenfunctions of trions and biexcitons using a combination of diffusion Monte Carlo and very large variational calculations with explicitly correlated Gaussian basis functions. Binding energies and spatial structures of these complexes are presented as a function of the layer thickness. The trion and biexciton of the thinnest layered HOIP have binding energies of 35 and 44 meV, respectively, whereas a single exfoliated layer is predicted to have trions and biexcitons with equal binding energies of 48 meV. We compare our findings to available experimental data and to that of other quasi-two-dimensional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.216402DOI Listing

Publication Analysis

Top Keywords

trions biexcitons
16
binding energies
16
layered hybrid
8
hybrid organic-inorganic
8
organic-inorganic lead
8
lead halide
8
halide perovskites
8
excitonic complexes
8
layered hoips
8
layered
5

Similar Publications

Acoustic Modulation of Excitonic Complexes in hBN/WSe/hBN Heterostructures.

Nano Lett

December 2024

Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, 13083-859 Campinas, Brazil.

The interaction of high-frequency surface acoustic waves (SAWs) and excitons in van der Waals heterostructures (vdWHs) offers challenging opportunities to explore novel quantum effects and functionalities. We probe the interaction of neutral excitons, trions, and biexcitons with SAWs in a hBN/WSe/hBN vdWH. We show that neutral excitons respond weakly to the SAW stimulus at 5 K.

View Article and Find Full Text PDF

Two-dimensional semiconductors exhibit pronounced many-body effects and intense optical responses due to strong Coulombic interactions. Consequently, subtle differences in photoexcitation conditions can strongly influence how the material dissipates energy during thermalization. Here, using multiple excitation spectroscopies, we show that a distinct thermalization pathway emerges at elevated excitation energies, enhancing the formation of trions and charged biexcitons in single-layer WSe by up to 2× and 5× , respectively.

View Article and Find Full Text PDF

The semiconducting layered transition metal dichalcogenides (e.g., WS) are excellent candidates for the realization of optoelectronic and nanophotonic applications on account of their band gap tunability, high binding energy and oscillator strength of the excitons, strong light-matter interaction, appreciable charge carrier mobility, and valleytronic properties.

View Article and Find Full Text PDF

CVD grown monolayer MoSfilms on c-sapphire substrates are vacuum annealed and capped with (111) NiO epitaxial films using pulsed laser deposition technique. Time, energy and polarization resolved optical techniques are used to understand the effect of capping on the excitonic properties of the monolayer MoS. It has been observed that trion contribution in the photoluminescence (PL) spectra increases after the capping, suggesting an enhancement of electron concentration in the conduction band.

View Article and Find Full Text PDF

Lead halide perovskite nanocrystals (NCs) have attracted much attention as light-source materials for light-emitting diodes, lasers, and quantum light emitters. The luminescence properties of perovskite NCs and the performance of NC-based light-source devices depend on trion and biexciton dynamics. Here, we examined the size dependence of trion and biexciton binding energies by conducting low-temperature single-dot spectroscopy on three different perovskite NCs: CsPbBr, CsPbI, and FAPbBr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!