A Highly Stable Photodetector Based on a Lead-Free Double Perovskite Operating at Different Temperatures.

J Phys Chem Lett

College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.

Published: June 2021

In recent years, considerable breakthroughs have been achieved in the explored photodetectors with improved performance and stability. However, such devices suffer from the drifting parameters (photoresponsivity, response time, and specific detectivity) in the case of evident operating temperature changes. Here, a double perovskite CsNaBiCl-based ultraviolet (UV) photodetector is developed free from thermal disturbance, exhibiting a steady photoresponsivity (≈ 67.98 mA/W) and response time (≈ 16.42 ms) within a wide temperature range (from 273 to 333 K). Further studies demonstrate that the stability of the crystal structure endows the superior photodetection capability. This result unambiguously highlights the great potential of such double perovskite CsNaBiCl compound as an environmentally friendly alternative for UV photodetectors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01416DOI Listing

Publication Analysis

Top Keywords

double perovskite
12
response time
8
highly stable
4
stable photodetector
4
photodetector based
4
based lead-free
4
lead-free double
4
perovskite operating
4
operating temperatures
4
temperatures years
4

Similar Publications

Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.

View Article and Find Full Text PDF

The excellent optical and electronic properties of halide perovskite materials have attracted researchers to investigate this particular field. However, the instability in ambient conditions and toxicity of materials like lead have given some setbacks to commercial use. To overcome these issues, perovskite-inspired materials with less toxic and excellent air-stable materials are being studied.

View Article and Find Full Text PDF

Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.

View Article and Find Full Text PDF

Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.

View Article and Find Full Text PDF

Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!