Surface Structures of MnO and the Partition of Oxidation States of Mn.

J Phys Chem Lett

National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.

Published: June 2021

The Mn(III) ions at MnO surface are hypothesized to contribute to catalytic activity in oxygen reduction reaction. However, the surface structure and stability of MnO are far less understood. Here, the atomic structures of the widespread (101) and (001) surfaces of MnO are determined by combining aberration-corrected transmission electron microscopy and DFT calculations. The surface stabilization mechanisms and the oxidation states of Mn are revealed and correlated to the catalytic activity of the surfaces. The results show that the (101) surface undergoes a subsurface reconstruction, forming a rock-salt-type surface layer. The Mn(III) ions are in the outermost layer of the (001) surface but in the subsurface of the (101) surface. The surface partition of the Mn(III) ions provides a microscopic understanding to the observed higher catalytic activity of the (001) surface relative to the (101) surface and would contribute to further development of novel catalysts based on MnO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c01422DOI Listing

Publication Analysis

Top Keywords

mniii ions
12
catalytic activity
12
101 surface
12
surface
11
oxidation states
8
001 surface
8
mno
5
surface structures
4
structures mno
4
mno partition
4

Similar Publications

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

Slow transformation efficiency of Fe(III)/Fe(II) limits the generation of radicals in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs), and these radicals was easy to be interfered by the presence of water constituents. In addition, in-situ coagulation during this oxidation process was neglected. This study proposed Fe(II)/PMS-Mn(VII) in the presence of chlorides ions (FPMC) process to reveal multiple promoting effects of Mn on redox cycle of Fe(III)/Fe(II) and different reactive mechanisms of Cl on types of radicals generation pathways, and the in-situ coagulation enhanced mechanisms was investigated.

View Article and Find Full Text PDF

Reductive dissolution of manganese oxide (MnO) is a major process that improves the availability of manganese in natural aquatic environments. The extracellular organic matter (EOM) secreted by algae omnipresent in eutrophic waters may affect MnO dissolution thus the fate of organic micropollutants. This study investigates the mechanisms of MnO reductive dissolution mediated by EOM and examines the effects of this process on 17α-ethinylestradiol degradation.

View Article and Find Full Text PDF

Efficient degradation of tetracycline by Mn(III)-microbial complexes mediated by mnOx@ACF in sequencing batch reactors: performance, mechanism, and effect on microbial community structure.

Water Sci Technol

December 2024

School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China E-mail:

Engineered nanomaterials are widely used in water and wastewater treatment processes, and minimizing their adverse effects on biological treatment processes in wastewater treatment plants has become the primary focus. In this study, activated carbon fiber (ACF)-loaded manganese oxide nanomaterials (MnOx@ACF) were synthesized. A small-scale sequencing batch reactor (SBR) was constructed to simulate the synergistic degradation of pollutants by nanomaterials and microorganisms and the effects of nanomaterials on the structure of the microbial community in a wastewater treatment plant.

View Article and Find Full Text PDF

A polymeric form of basic iron(III) acetate with an acetic acid ligand.

Acta Crystallogr C Struct Chem

December 2024

University of Melbourne, School of Chemistry, Grattan Street, Parkville, 3052, Australia.

Article Synopsis
  • - A new crystalline compound has been discovered, consisting of a ferric acetate unit and formed from hydrated iron(III) nitrate and acetic anhydride, with the chemical notation [Fe(CHO)O(CHO)].
  • - The structure features individual [FeO(OAc)] units linked by bridging acetate ions to create zigzag chains, with unique coordination of a carbonyl group from acetic acid at one of the iron centers.
  • - This is the first time an acetic acid molecule has been reported coordinating with an iron ion, showing a weaker bond that contrasts with a similar manganese compound affected by the Jahn-Teller effect.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!