Objective: To investigate the efficacy of celastrol treatment of hepatocellular carcinoma (HCC) cells in vitro and in vivo and to propose a mechanism of action.
Methods: A human HepG2 liver cancer cell line and a xenograft tumor model were used to investigate the effects of celastrol on HCC in vitro and in vivo. A CCK-8 kit was used to detect cell viability. Flow cytometry and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining were used to detect apoptosis. Western blotting and immunohistochemistry were used to detect the expression of cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, cleaved-PARP, mammalian target of rapamycin (mTOR), and p-mTOR. Hematoxylin-eosin staining was used to observe the tissue morphology.
Results: Celastrol decreased the viability of HepG2 cells and induced apoptosis. Western blot assays indicated that celastrol up-regulated cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, and cleaved-PARP by inhibiting the phosphorylation of mTOR in HepG2 cells. Moreover, celastrol inhibited the tumor growth in a xenograft model. Celastrol also induced caspase-dependent apoptosis (up-regulation of cleaved-caspase- 3, -8, -9, and cleaved-PARP) and inhibited the activation of mTOR in vivo.
Conclusion: Celastrol induces caspase-dependent apoptosis in HCC cells by inhibiting the activation of mTOR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19852/j.cnki.jtcm.2021.03.006 | DOI Listing |
Circ Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFMedComm (2020)
January 2025
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.
View Article and Find Full Text PDFTherapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!