Epimutations and mutations are two dissimilar mechanisms that have contributed to the phenotypic diversities in organisms. Though dissimilar, many previous studies have revealed that the consequences of epimutations and mutations are not mutually exclusive. DNA rich in epigenetic modifications can be prone to mutations and vice versa. In order to get a better insight into the molecular evolution in organisms, it is important to consider the information of both genetic and epigenetic changes in their genomes. Understanding the similarities and differences between the consequences of epimutations and mutations is required for a better interpretation of phenotypic diversities in organisms. Factors contributing to epigenetic changes such as paramutations and mutation hotspots and, the correlation of the interdependence of mutations and epigenetic changes in DNA are important aspects that need to be considered for molecular evolutionary studies. Thus, this review explains what epimutations are, their causes, how they are similar/different from mutations, and the influence of epigenetic changes and mutations on each other, further emphasizing how molecular evolution involving both mutations and epimutations can lead to speciation. Considering this approach will aid in reorganizing taxonomic classifications, importantly, solving disparities in species identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-021-00124-8 | DOI Listing |
Nucleic Acids Res
December 2024
Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany.
Increasing antifungal drug resistance is a major concern associated with human fungal pathogens like Aspergillus fumigatus. Genetic mutation and epimutation mechanisms clearly drive resistance, yet the epitranscriptome remains relatively untested. Here, deletion of the A.
View Article and Find Full Text PDFMol Cell
December 2024
Institute of Human Genetics, CNRS and University of Montpellier, 141 Rue de la Cardonille, 34094 Montpellier, France. Electronic address:
Non-genetic information can be inherited across generations in a process known as transgenerational epigenetic inheritance (TEI). In Drosophila, hemizygosity of the Fab-7 regulatory element triggers inheritance of the histone mark H3K27me3 at a homologous locus on another chromosome, resulting in heritable epigenetic differences in eye color. Here, by mutating transcription factor binding sites within the Fab-7 element, we demonstrate the importance of the proteins pleiohomeotic and GAGA factor in the establishment and maintenance of TEI.
View Article and Find Full Text PDFEnviron Epigenet
November 2024
Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy.
Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure in sperm tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!