The use of biomacromolecules is a nascent development in clean alternative energies. In applications of biosensors and biophotovoltaic devices, the bacterial photosynthetic reaction center (RC) is a protein-pigment complex that has been commonly interfaced with electrodes, in large part to take advantage of the long-lived and high efficiency of charge separation. We investigated assemblies of RCs on an electrode that range from monolayer to multilayers by measuring the photocurrent produced when illuminated by an intensity-modulated excitation light source. In addition, atomic force microscopy and modeling of the photocurrent with the Marcus-Hush-Chidsey theory detailed the reorganization energy for the electron transfer process, which also revealed changes in the RC local environment due to the adsorbed conformations. The local environment in which the RCs are embedded significantly influenced photocurrent generation, which has implications for electron transfer of other biomacromolecules deposited on a surface in sensor and photovoltaic applications employing a redox electrolyte.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170006 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102500 | DOI Listing |
Commun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.
View Article and Find Full Text PDFPlants (Basel)
December 2024
The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China.
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO concentration (). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO. In this study, we experimentally investigated the influence of elevated CO (from 400 to 800 μmol mol) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, and .
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Engineering, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
In this research, we sought to investigate how high temperature, salinity, and CO affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na (e[Na]), and elevated temperature and Na (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA).
View Article and Find Full Text PDFPLoS One
January 2025
Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Nanning, P. R. China.
The impact of seasonal short-term drought on plant physiology and resilience is crucial for conservation and management strategies. This study investigated drought stress effects on growth, photosynthetic capacity, and physiological responses of Camphor (Cinnamomum camphora) seedlings in Guangxi province, China. Fertilized potted plants underwent continuous drought treatments to assess varying water supply effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!