The serotonin transporter (SERT, SLC6A4) is a Na-dependent transporter that regulates the availability of serotonin (5-HT, 5-hydroxytryptamine), a key neurotransmitter and hormone in the brain and the intestine. The human SERT gene consists of two alternate promoters that drive expression of an identical SERT protein. However, there are different mRNA transcript variants derived from these two promoters that differ in their 5' untranslated region (5'UTR), which is the region of the mRNA upstream from the protein-coding region. Two of these transcripts contain exon-1a and are abundant in neuronal tissue, whereas the third transcript contains exon-1c and is abundant in the intestine. The 3'UTR is nearly identical among the transcripts. Current studies tested the hypothesis that the UTRs of SERT influence its expression in intestinal epithelial cells (IECs) by controlling mRNA or protein levels. The SERT UTRs were cloned into luciferase reporter plasmids and luciferase mRNA and activity were measured following transient transfection of the UTR constructs into the model IEC Caco-2. Luciferase activity and mRNA abundance were higher than the empty vector for two of the three 5'UTR variants. Calculation of translation index (luciferase activity divided by the relative luciferase mRNA level) revealed that the exon-1a containing 5'UTRs had enhanced translation when compared to the exon-1c containing 5'UTR which exhibited a low translation efficiency. Compared to the empty vector, the SERT 3'UTR markedly decreased luciferase activity. In silico analysis of the SERT 3'UTR revealed many conserved potential miRNA binding sites that may be responsible for this decrease. In conclusion, we have shown that the UTRs of SERT regulate mRNA abundance and protein expression. Delineating the molecular basis by which the UTRs of SERT influence its expression will lead to an increased understanding of post-transcriptional regulation of SERT in GI disorders associated with altered 5-HT availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188842 | PMC |
http://dx.doi.org/10.1016/j.genrep.2019.100513 | DOI Listing |
Nat Commun
December 2024
Department of Biochemistry, McGill University, Montreal, QC, Canada.
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers.
View Article and Find Full Text PDFBMC Genomics
December 2024
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730030, China.
Background: The Hezuo (HZ) pig, a famous indigenous breed in China, is characterized by precocious puberty compared with foreign-introduced pig breeds. Sexual maturation is a complex physiological process, and in recent years, circular RNAs (circRNAs), a new class of noncoding RNAs with endogenous regulatory functions, have been shown to play important roles in regulating sexual maturation. However, the dynamic expression and regulatory mechanism of circRNAs during sexual maturation in HZ pigs remain unclear.
View Article and Find Full Text PDFFront Nutr
December 2024
College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China.
Background: The use of enzymes within pig feed can reduce the challenges associated with antibiotic-free animal feeding. However, this enzymatic effect is often limited by the internal and external gut environment. This study aimed to improve diet quality and assess the impact of an enzymatically hydrolyzed diet (EHD) on growth performance, meat quality, and intestinal health in growing pigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!