Patients with schizophrenia are at high risk of pre-mature mortality due to cardiovascular disease (CVD). Our group has completed studies in pharmacogenomics and metabolomics that have independently identified perturbations in one-carbon metabolism as associated with risk factors for CVD in this patient population. Therefore, this study aimed to use genetic and metabolomic data to determine the relationship between folate pharmacogenomics, one-carbon metabolites, and insulin resistance as measured using the homeostatic model assessment for insulin resistance (HOMA-IR) as a marker of CVD. Participants in this pilot analysis were on a stable atypical antipsychotic regimen for at least 6 months, with no diabetes diagnosis or use of antidiabetic medications. Participant samples were genotyped for variants rs1801131 ( A1298C) and rs1801133 ( C677T). Serum metabolite concentrations were obtained with NMR. A least squares regression model was used to predict log(HOMA-IR) values based on the following independent variables: serum glutamate, glycine, betaine, serine, and threonine concentrations, and carrier status of the variant alleles for the selected genotypes. A total of 67 participants were included, with a median age of 47 years old (IQR 42-52), 39% were female, and the median BMI was 30.3 (IQR 26.3-37.1). Overall, the model demonstrated an ability to predict log(HOMA-IR) values with an adjusted of 0.44 and a -value of < 0.001. Glutamate, threonine, and carrier status of the 1298 C or 677 T allele were positively correlated with log(HOMA-IR), whereas glycine, serine, and betaine concentrations trended inversely with log(HOMA-IR). All factors included in this final model were considered as having a possible effect on predicting log(HOMA-IR) as measured with a -value < 0.1. Presence of pharmacogenomic variants that decrease the functional capacity of the MTHFR enzyme are associated with increased risk for cardiovascular disease, as measured in this instance by log(HOMA-IR). Furthermore, serine, glycine, and betaine concentrations trended inversely with HOMA-IR, suggesting that increased presence of methyl-donating groups is associated with lower measures of insulin resistance. Ultimately, these results will need to be replicated in a significantly larger population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185170PMC
http://dx.doi.org/10.3389/fpsyt.2021.623143DOI Listing

Publication Analysis

Top Keywords

insulin resistance
16
one-carbon metabolism
8
patients schizophrenia
8
cardiovascular disease
8
predict loghoma-ir
8
loghoma-ir values
8
glycine betaine
8
carrier status
8
betaine concentrations
8
concentrations trended
8

Similar Publications

The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.

View Article and Find Full Text PDF

Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.

View Article and Find Full Text PDF

Effect of cardiomyocyte-specific lipid phosphate phosphatase 3 overexpression on high-fat diet-induced cardiometabolic dysfunction in mice.

Am J Physiol Heart Circ Physiol

January 2025

Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.

Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.

View Article and Find Full Text PDF

People with type 2 diabetes (T2D) have a greater risk of developing neurodegenerative diseases, like Alzheimer's disease, in later life. Exogenous ketone supplements containing the ketone body β-hydroxybutyrate (β-OHB) may be a strategy to protect the brain as β-OHB can support cerebral metabolism and promote neuronal plasticity via expression of brain-derived neurotrophic factor (BDNF). Parallel human (ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!