X-ray microprobe analysis was used to determine concentrations (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in cellular compartments of frozen, unfixed sections of rat sciatic and tibial nerves and dorsal root ganglion (DRG). Five compartments were examined in peripheral nerve (axoplasm, mitochondria, myelin, extraaxonal space, and Schwann cell cytoplasm), and four were analyzed in DRG nerve cell bodies (cytoplasm, mitochondria, nucleus, and nucleolus). Each morphological compartment exhibited characteristic concentrations of elements. The extraaxonal space contained high concentrations of Na, Cl, and Ca, whereas intraaxonal compartments exhibited lower concentrations of these elements but relatively high K contents. Nerve axoplasm and axonal mitochondria had similar elemental profiles, and both compartments displayed proximodistal gradients of decreasing levels of K, Cl, and, to some extent, Na. Myelin had a selectively high P concentration with low levels of other elements. The elemental concentrations of Schwann cell cytoplasm and DRG were similar, but both were different from that of axoplasm, in that K and Cl were markedly lower whereas P was higher. DRG cell nuclei contained substantially higher K levels than cytoplasm. The subcellular distribution of elements was clearly shown by color-coded images generated by computer-directed digital x-ray imaging. The results of this study demonstrate characteristic elemental distributions for each anatomical compartment, which doubtless reflect nerve cell structure and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1988.tb01811.x | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Several groups of neurons in the NTS suppress food intake, including Prlh-expressing neurons (NTS cells). Not only does the artificial activation of NTS cells decrease feeding, but also the expression of Prlh (which encodes the neuropeptide PrRP) and neurotransmission by NTS neurons contributes to the restraint of food intake and body weight, especially in animals fed a high fat diet (HFD). We used animals lacking PrRP receptors GPR10 and/or GRP74 (encoded by Prlhr and Npffr2, respectively) to determine roles for each in the restraint of food intake and body weight by the increased expression of Prlh in NTS neurons (NTS mice) and in response to the anorectic PrRP analog, p52.
View Article and Find Full Text PDFExp Eye Res
January 2025
Institute of Biomedical Engineering, University of Montréal, Montréal, Canada; Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada. Electronic address:
The morphology and thickness of the retinal layers are valuable biomarkers for retinal health and development. The retinal layers in mice are similar to those in humans; thus, a mouse is appropriate for studying the retina. The objectives of this systematic review were: (1) to describe normal retinal morphology quantitatively using retinal layer thickness measured from birth to age 6 months in healthy mice; and (2) to describe morphological changes in physiological retinal development over time using the longitudinal (in vivo) and cross-sectional (ex vivo) data from the included studies.
View Article and Find Full Text PDFCells Dev
January 2025
Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France. Electronic address:
The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.
View Article and Find Full Text PDFPeptides
January 2025
Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!