Background: Much attention has been paid to the regulatory role of microRNA (miRNA) in insulin resistance. Nevertheless, how miR-140-5p regulates insulin resistance remains unclear. In this research, we aim to investigate the roles of miR-140-5p in insulin resistance.
Methods: qRT-PCR is used to analyze the expression level of miR-140-5p in insulin-resistant HepG2 cells. Glucose consumption and glucose uptake are detected to study the effect of miR-140-5p knockdown in insulin-resistant HepG2 cells and miR-140-5p overexpression in HepG2 cells. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-140-5p and study the effect of miR-140-5p on the downstream substrates of target genes. Rescue experiments have verified the roles of miR-140-5p and target gene in glucose metabolism.
Results: The expression level of miR-140-5p was upregulated in insulin-resistant HepG2 cells and was significantly correlated with cellular glucose metabolism. Functionally, miR-140-5p overexpression induced impairment of glucose consumption and glucose uptake. Besides, bioinformatics analysis indicated that glycogen synthetase (GYS1) and protein phosphatase 1 catalytic subunit gamma (PPP1CC) were the target genes of miR-140-5p. Western blotting and qRT-PCR results revealed a negative correlation between GYS1, PPP1CC and miR-140-5p. The glycogen detection results showed that miR140-5p inhibited the production of the downstream substrates of the target gene. Rescue experiments showed that inhibition of GYS1 or PPP1CC partially enhanced the insulin-resistant effects of miR-140-5p knockdown in insulin-resistant HepG2 cells.
Conclusion: miR-140-5p overexpression augments the development of insulin resistance and miR-140-5p may be served as a therapeutic target of metabolic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187005 | PMC |
http://dx.doi.org/10.2147/DMSO.S304055 | DOI Listing |
Food Funct
January 2025
Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFToxics
December 2024
School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou 014040, China.
Arsenic exposure can induce liver insulin resistance (IR) and diabetes (DM), but the underlying mechanisms are not yet clear. Circular RNAs (circRNAs) are involved in the regulation of the onset of diabetes, especially in the progression of IR. This study aimed to investigate the role of circRNAs in arsenic-induced hepatic IR and its underlying mechanism.
View Article and Find Full Text PDFJ Med Food
December 2024
Department of Food Science and Biotechnology, Andong National University, Andong, Korea.
In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3--β--galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!