Purpose: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants.
Methods: We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality.
Results: Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants.
Conclusion: GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487929 | PMC |
http://dx.doi.org/10.1038/s41436-021-01216-8 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China. Electronic address:
Commun Biol
December 2024
Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
During embryogenesis, vertebral axial patterning is intricately regulated by multiple signaling networks. This study elucidates the role of protogenin (Prtg), an immunoglobulin superfamily member, in vertebral patterning control. Prtg knockout (Prtg) mice manifest anterior homeotic transformations in their vertebral columns and significant alterations in homeobox (Hox) gene expression.
View Article and Find Full Text PDFNat Neurosci
January 2025
HuidaGene Therapeutics Inc., Shanghai, China.
Duplication of methyl-CpG-binding protein 2 (MECP2) gene causes MECP2 duplication syndrome (MDS). To normalize the duplicated MECP2 in MDS, we developed a high-fidelity Cas13Y (hfCas13Y) system capable of targeting the MECP2 (hfCas13Y-gMECP2) messenger RNA for degradation and reducing protein levels in the brain of humanized MECP2 transgenic mice. Moreover, the intracerebroventricular adeno-associated virus (AAV) delivery of hfCas13Y-gMECP2 in newborn or adult MDS mice restored dysregulated gene expression and improved behavior deficits.
View Article and Find Full Text PDFDiscov Med
October 2024
Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
Background: Myocardial ischemia/reperfusion (I/R) injury stands as a primary contributor to ischemic heart disease. Sevoflurane (SEVO), a commonly used inhalation anesthetic, has been shown to exert a direct protective effect on ischemic heart injury. However, the specific mechanism by which it exerts the protective effect remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!