The circadian clock regulates many biochemical and physiological pathways, and lack of clock genes, such as Period (Per) 2, affects not only circadian activity rhythms, but can also modulate feeding and mood-related behaviors. However, it is not known how cell-type specific expression of Per2 contributes to these behaviors. In this study, we find that Per2 in glial cells is important for balancing mood-related behaviors, without affecting circadian activity parameters. Genetic and adeno-associated virus-mediated deletion of Per2 in glial cells of mice leads to reduced despair and anxiety. This is paralleled by an increase of the GABA transporter 2 (Gat2/Slc6a13) and Dopamine receptor D3 (Drd3) mRNA, and a reduction of glutamate levels in the nucleus accumbens (NAc). Interestingly, neuronal Per2 knock-out also reduces despair, but does not influence anxiety. The change in mood-related behavior is not a result of a defective molecular clock, as glial Bmal1 deletion has no effect on neither despair nor anxiety. Exclusive deletion of Per2 in glia of the NAc reduced despair, but had no influence on anxiety. Our data provide strong evidence for an important role of glial Per2 in regulating mood-related behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192521PMC
http://dx.doi.org/10.1038/s41598-021-91770-7DOI Listing

Publication Analysis

Top Keywords

per2 glial
12
glial cells
12
mood-related behavior
12
circadian activity
8
mood-related behaviors
8
deletion per2
8
reduced despair
8
despair anxiety
8
despair influence
8
influence anxiety
8

Similar Publications

Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice.

Phytomedicine

August 2024

School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, PR China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, PR China. Electronic address:

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia and progressive cognitive dysfunction, and our clinical investigation revealed that the plasma concentration of melatonin (Mlt) decreased and was closely related to cognition in T2DM patients. However, although many studies have suggested that Mlt has a certain protective effect on glucose and lipid metabolism disorders and neuropsychiatric injury, the underlying mechanism of Mlt against T2DM-related metabolic and cognitive impairments remains unclear.

Purpose: The aim of the present study was to investigate the therapeutic effect of Mlt on metabolic disorders and Alzheimer's disease (AD)-like neuropsychiatric injuries in T2DM mice and to explore the possible underlying molecular mechanism involved.

View Article and Find Full Text PDF

Background: Sleep disorders, depression, and Alzheimer's disease (AD) are extensively reported as comorbidity. Although neuroinflammation triggered by microglial phenotype M1 activation, leading to neurotransmitter dysfunction and Aβ aggregation, is considered as the leading cause of depression and AD, whether and how sub-chronic or chronic sleep deprivation (SD) contribute to the onset and development of these diseases remains unclear.

Methods: Memory and depression-like behaviors were evaluated in both SDs, and then circadian markers, glial cell phenotype polarization, cytokines, depression-related neurotransmitters, and AD-related gene/protein expressions were measured by qRT-PCR, enzyme-linked immunosorbent assay, high-performance liquid chromatography, and western-blotting respectively.

View Article and Find Full Text PDF

The molecular basis for circadian dependency in stroke due to subarachnoid hemorrhagic stroke (SAH) remains unclear. We reasoned that microglial erythrophagocytosis, crucial for SAH response, follows a circadian pattern involving carbon monoxide (CO) and CD36 surface expression. The microglial BV-2 cell line and primary microglia (PMG) under a clocked medium change were exposed to blood ± CO (250 ppm, 1 h) in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study, mice lacking a core clock component did not develop heightened sensitivity to pain after nerve injury, unlike typical male mice.
  • * Increased expression of α1D-adrenergic receptors in these clock-deficient mice led to higher production of an endocannabinoid (2-AG), which helped reduce pain sensitivity, indicating a potential interaction between the circadian clock and pain regulation.
View Article and Find Full Text PDF

The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!