Targeting tumor-associated macrophages (TAMs) is a promising strategy to modify the immunosuppressive tumor microenvironment and improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain; small molecule MAO inhibitors (MAOIs) are clinically used for treating neurological disorders. Here we observe MAO-A induction in mouse and human TAMs. MAO-A-deficient mice exhibit decreased TAM immunosuppressive functions corresponding with enhanced antitumor immunity. MAOI treatment induces TAM reprogramming and suppresses tumor growth in preclinical mouse syngeneic and human xenograft tumor models. Combining MAOI and anti-PD-1 treatments results in synergistic tumor suppression. Clinical data correlation studies associate high intratumoral MAOA expression with poor patient survival in a broad range of cancers. We further demonstrate that MAO-A promotes TAM immunosuppressive polarization via upregulating oxidative stress. Together, these data identify MAO-A as a critical regulator of TAMs and support repurposing MAOIs for TAM reprogramming to improve cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192781PMC
http://dx.doi.org/10.1038/s41467-021-23164-2DOI Listing

Publication Analysis

Top Keywords

cancer immunotherapy
12
monoamine oxidase
8
improve cancer
8
tam immunosuppressive
8
tam reprogramming
8
targeting monoamine
4
oxidase a-regulated
4
a-regulated tumor-associated
4
tumor-associated macrophage
4
macrophage polarization
4

Similar Publications

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Cellular senescence offers distinct immunological vulnerabilities in cancer.

Trends Cancer

December 2024

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:

Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.

View Article and Find Full Text PDF

Emergence of Circulating Tumor DNA as a Precision Biomarker in Lung Cancer Radiation Oncology and Beyond.

Hematol Oncol Clin North Am

December 2024

Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Electronic address:

Circulating tumor DNA (ctDNA) is emerging as a transformative biomarker in the management of non-small cell lung cancer (NSCLC). This review focuses on its role in detecting minimal residual disease (MRD), predicting treatment response, and guiding therapeutic decision-making in radiation oncology and immunotherapy. Key studies demonstrate ctDNA's prognostic value, particularly in identifying relapse risk and refining patient stratification for curative-intent and consolidative treatments.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!