Kinetic characteristics of mobile Mo associated with Mn, Fe and S redox geochemistry in estuarine sediments.

J Hazard Mater

College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.

Published: September 2021

AI Article Synopsis

  • Estuarine sediments play a key role in the transportation and storage of molybdenum (Mo) as it moves from rivers to the ocean.
  • Research using advanced techniques revealed that dissolved manganese (Mn) has a stronger correlation with Mo mobility compared to dissolved iron (Fe), indicating Mn's significant influence through molybdate adsorption.
  • The study found that oxic intertidal sediments act as Mo sinks while anoxic subtidal sediments serve as sources, highlighting the complex interplay of redox conditions and chemical processes affecting Mo availability.

Article Abstract

Estuarine sediments are crucial repositories and incubators of molybdenum (Mo) during its transport from rivers to the ocean. Here, Mo mobility and related processes in estuarine sediments were explored using high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques. Better correlations were observed between dissolved Mn and Mo than between dissolved Fe and Mo, implying that Mn geochemistry plays a key role in dissolved Mo mobility via molybdate adsorption onto abundant Mn oxides and its substantial release upon intense Mn reduction. As a result, oxic intertidal sediments functioned as Mo sinks, and anoxic subtidal sediments functioned as Mo sources. The opposite vertical distributions between DGT-Labile S and DGT-Labile Mo indicated that the availability of labile Mo can be blocked by aqueous sulfide. However, the corresponding high concentrations of DGT-Labile S and dissolved Mo at subtidal sites demonstrated that the abundant dissolved Mo remobilized via Mn reduction was not effectively solidified by sulfide. Simulation with the DIFS model further verified that redox conditions and induced physicochemical processes are crucial factors controlling Mo mobility, with relatively low dissolved Mo concentrations but an adequate and steady resupply capacity of the bioavailable molybdate in intertidal sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126200DOI Listing

Publication Analysis

Top Keywords

estuarine sediments
12
intertidal sediments
8
sediments functioned
8
sediments
6
dissolved
6
kinetic characteristics
4
characteristics mobile
4
mobile associated
4
associated redox
4
redox geochemistry
4

Similar Publications

Evaluation of heavy metal accumulation and sources in surface sediments of the Pearl River Estuary (China).

Mar Environ Res

January 2025

School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.

The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away.

View Article and Find Full Text PDF

The distribution of trace metals (TMs) in a continuous water body often exhibits watershed attributes, but the tidal gates of the coastal rivers may alter their transformation and accumulation patterns. Therefore, a tidal gate-controlled coastal river was selected to test the distribution and accumulation risks of Al, As, Cr, Cu, Fe, Mn, Ni, Sr, and Zn in the catchment area (CA), estuarine area (EA), and offshore area (OA). Associations between TMs and bacterial communities were analyzed to assess the feasibility of using bacterial parameters as ecological indicators.

View Article and Find Full Text PDF

As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.

View Article and Find Full Text PDF

Unlabelled: iKaluk, Inuttitut for Arctic charr (), holds significant commercial and cultural value for Inuit communities throughout Nunatsiavut. Studies evaluating iKaluk habitat associations in freshwater are plentiful; however, there is limited information on the ecological makeup and sediment characteristics of anadromous charr habitats in marine environments. This study investigated the benthic associations of Arctic charr during their marine residency period in Nain, Nunatsiavut, using underwater videos, harvester-identified fishing locations, and acoustic telemetry.

View Article and Find Full Text PDF

Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!