Modeling of the acoustic-radiation-induced static component (SC) generation of primary Lamb wave tone burst propagating in a layered plate is conducted. Accompanying the propagation of primary Lamb wave tone burst, there are the finite-duration SC bulk driving force in the interior of the layered plate, and the finite-duration SC traction stress on each surface/interface. According to the modal analysis approach for waveguide excitation, the function of the finite-duration SC bulk driving force and traction stress is to generate the finite-duration SC of primary Lamb wave tone burst. Compared with the second harmonic (SH) generation of Lamb wave propagation in a layered plate, the phase velocity matching is no longer required for the generation of the SC with a cumulative growth effect. Based on modeling of the finite-duration SC generation, it is found that the integrated amplitude of the finite-duration SC generated by propagation of the primary Lamb wave tone burst does grow with propagation distance. Meanwhile, the numerical analyses and the finite element (FE) simulations are conducted to investigate the effect of the said SC generation. It is found that, although the interfacial layer of the layered plate considered is quite thin compared with the upper and lower layers, the numerical analyses indicate that the influence of the interfacial property on the cumulative growth effect of the SC of primary Lamb wave is significant. Furthermore, the FE simulations demonstrate that the cumulative SC of primary Lamb wave tone burst will exhibit a monotonic and sensitive response to the degree of interfacial degradation. This investigation provides an physical insight not previously available into the process of the SC generation of Lamb wave propagation in a layered plate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2021.106473 | DOI Listing |
Sensors (Basel)
December 2024
ITA Technological Institute of Aeronautics, Electronic and Computer Engineering, São José dos Campos 12228-900, SP, Brazil.
There is extensive use of nondestructive test (NDT) inspections on aircraft, and many techniques nowadays exist to inspect failures and cracks in their structures. Moreover, NDT inspections are part of a more general structural health monitoring (SHM) system, where cutting-edge technologies are needed as powerful resources to achieve high performance. The high-performance aspects of SHM systems are response time, power consumption, and usability, which are difficult to achieve because of the system's complexity.
View Article and Find Full Text PDFNanophotonics
July 2024
POLIMA - Center for Polariton-Driven Light-Matter Interactions, University of Southern Denmark, DK-5230 Odense, Denmark.
Nonlocal and quantum mechanical phenomena in noble metal nanostructures become increasingly crucial when the relevant length scales in hybrid nanostructures reach the few-nanometer regime. In practice, such mesoscopic effects at metal-dielectric interfaces can be described using exemplary surface-response functions (SRFs) embodied by the Feibelman -parameters. Here we show that SRFs dramatically influence quantum electrodynamic phenomena - such as the Purcell enhancement and Lamb shift - for quantum light emitters close to a diverse range of noble metal nanostructures interfacing different homogeneous media.
View Article and Find Full Text PDFUltrasonics
March 2025
School of Engineering, Cardiff University, UK CF24 3AA. Electronic address:
The current key issues in applying acoustofluidics in engineering lie in the inflexibility of manufacturing processes, particularly those involving modifications to piezoelectric materials and devices. This leads to inefficient prototyping and potentially high costs. To overcome these limitations, we proposed a technique that is capable of prototyping acoustofluidic devices in a straightforward manner.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both the bias magnetic field and ultrasonic excitation achieved by a composite excitation containing both DC and AC components. This design offers significant advantages, enabling high-frequency Lamb wave generation in nickel sheets for ultrasonic detection while reducing device complexity.
View Article and Find Full Text PDFGiven that many micro-nano piezoelectric acoustic devices operate at very high frequencies, the dissipation caused by metal electrodes significantly affects their performance (e.g., quality factor), but these dissipation characteristics cannot be explained by conductivity at high frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!