A novel supported molybdenum complex on cross-linked poly (1-Aminopropyl-3-vinylimidazolium bromide) entrapped cobalt oxide nanoparticles has been successfully fabricated through two different procedures, i.e. ultrasound (US) irradiations (100 W, 40 kHz) and reflux. The efficiency of the two different methods was comparatively investigated on the fundamental properties of proposed catalyst using diverse characterization techniques. Based on the obtained results, the ultrasonication method provides controlled polymerization process; as a result, well connected polymeric network is formed. In addition, the use of ultrasound waves turned out to be able to increase the particles uniformity, specific surface area (from 79.19 to 223.83 m/g), and the onset thermal degradation temperature (T) value (from 248 to 400 °C) of the prepared catalyst which intensifies the catalytic efficiency. Besides, US-treated catalyst demonstrated high chemical stability and maintained its cross-linked network after eight cycles recovery, while the cross-linked network of catalyst obtained under silent condition was completely disrupted. Furthermore, the ultrafast multi-step fabrication procedure was performed in less than 6 h under ultrasonic condition while a similar process promoted by a mechanical stirring method came to a conclusion after 5-6 days. Accordingly, the utility of the ultrasound irradiation was proved, and US-treated catalyst was applied for improved synthetic methodology of spiro 1,4-dihydropyridines and spiro pyranopyrazoles through different acidic active sites. Due to the significant synergistic influence between the proposed catalyst and US irradiation, a variety of novel and recognized mono-spiro compounds were fabricated at room temperature in high regioselectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193147PMC
http://dx.doi.org/10.1016/j.ultsonch.2021.105614DOI Listing

Publication Analysis

Top Keywords

molybdenum complex
8
complex cross-linked
8
cross-linked poly
8
proposed catalyst
8
us-treated catalyst
8
cross-linked network
8
catalyst
7
ultrasound-engineered fabrication
4
fabrication immobilized
4
immobilized molybdenum
4

Similar Publications

The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (BPzPy)Mo(III)-NTf, , with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol), such that these compounds could be used to form the diamagnetic, neutral terminal molybdenum oxo complex (BPzPy)Mo(IV)O, , by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri--butylphenyl).

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Optimization of MoNiCr Alloy Production Through Additive Manufacturing.

Materials (Basel)

December 2024

COMTES FHT a.s., Prumyslova 995, 334 41 Dobrany, Czech Republic.

One of the concepts behind Generation IV reactors is a molten salt coolant system, where the materials for the reactor itself and for the primary and secondary circuit components are subjected to extreme chemical and thermal stresses. Due to the unavailability of these materials, a nickel-molybdenum alloy known as MoNiCr has been developed in the Czech Republic. This paper discusses the manufacturing process for the MoNiCr alloy, covering conventional casting technology, forming, powder atomization, additive manufacturing (AM) using the directed energy deposition (DED-LB) process, and final heat treatment.

View Article and Find Full Text PDF

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism. It forms a complex with a small ferredoxin, FeSII (ref. ) or the 'Shethna protein II', which acts as an O sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!