The VariCol and ModiCon processes are two variants of the simulated moving bed (SMB) process, characterized by the modulation of the length of zones of the chromatographic column train and the feed concentration. These features give more flexibility than the conventional operation, leading to essential improvements in the separation and purification of mixtures. The optimal performance comparison of these two variants, the hybrid formed by their combination, and the conventional SMB process are scarce in the literature. This comparison helps discover new characteristics of each single and combined operation mode and creates guidelines to select the appropriate operation mode for possible real applications. In this work, the performance comparison of the ModiCon, VariCol, ModiCon+VariCol, and SMB processes is carried out in terms of maximal throughput for specific product purity values. Particular emphasis is placed on both the ModiCon and the hybrid ModiCon+VariCol processes characteristics. A strategy for combining and optimizing the ModiCon and the VariCol processes was determined. As a case study, the enantioseparation of guaifenesin was considered. In the ModiCon process, more than two modulation subintervals did not improve the performance in the separation. The optimal pattern, based on two subintervals, has zero feed concentration in the first subinterval and the maximal concentration in the second one. The best result for the hybrid operation (ModiCon+VariCol) was reached when the feed port moves simultaneously as the SMB process switching period. The optimal throughput of the ModiCon and the ModiCon+VariCol processes was almost doubled than that of the SMB process. These performances were based on larger zones I and II and not in zones II and III as occur with the SMB and VariCol process. The throughput in the hybrid operation increases more significantly than the ModiCon process when 5 columns were considered instead of 6. The hybrid operation could be more attractive for a system with a few numbers of columns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2021.462280 | DOI Listing |
Huan Jing Ke Xue
January 2025
College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an 311300, China.
Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China. Electronic address:
The limited availability of historical data has resulted in the ongoing debate regarding the short-term effects of thermal discharge from nuclear power plants (NPPs) on microbial communities, including both prokaryotes and microeukaryotes. This study focused on the co-occurrence patterns, assembly processes, and community functions in the eutrophic coastal waters of Sanmen Bay (SMB) before and after NPP operation. Gammaproteobacteria and Alphaproteobacteria were the dominant prokaryotic taxa, while Dinoflagellates consistently maintained their prevalence in SMB.
View Article and Find Full Text PDFEnviron Res
December 2024
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:
Biochar loaded with MgO is a promising adsorbent for the removal and recovery of phosphate from aqueous solutions. However, its phosphate adsorption capacity is unsatisfactory, especially at low phosphate concentrations. Loading nanoscale MgO onto biochar is an effective strategy.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
School of Energy Science and Engineering and Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China.
Sodium is gaining recognition as a promising alternative to lithium for battery applications, particularly in sodium metal batteries (SMBs), where the performance is critically influenced by the choice of electrolyte. Although conventional organic liquid electrolytes are widely used, they pose significant issues. Gel membrane (GM)-based electrolytes have demonstrated enhanced reliability and stability.
View Article and Find Full Text PDFCell Commun Signal
November 2024
Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
Hemoglobin (Hb) performs its physiological function within the erythrocyte. Extracellular Hb has prooxidative and proinflammatory properties and is therefore sequestered by haptoglobin and bound by the CD163 receptor on macrophages. In the present study, we demonstrate a novel process of Hb uptake by macrophages independent of haptoglobin and CD163.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!