Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse.

Mol Ther

Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Electronic address:

Published: October 2021

Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531229PMC
http://dx.doi.org/10.1016/j.ymthe.2021.06.005DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
12
intranasal infusion
8
infusion gd3
8
gd3 gm1
8
gm1 gangliosides
8
tyrosine hydroxylase
8
midbrain dopaminergic
8
gm1
7
gangliosides
5
gangliosides downregulates
4

Similar Publications

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Lymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles.

View Article and Find Full Text PDF

At cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!