Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120784 | DOI Listing |
Pharmaceutics
December 2024
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Cyclovirobuxine D, a natural compound derived from the medicinal plant Buxus sinica, demonstrates a diverse array of therapeutic benefits, encompassing anti-arrhythmic properties, blood pressure regulation, neuronal protection, and anti-ischemic activity. However, its limited solubility hinders the bioavailability of current oral and injectable formulations, causing considerable adverse reactions and toxicity. In this investigation, we embarked on an unprecedented exploration of the skin penetration potential of cyclovirobuxine D utilizing chemical penetration enhancers and niosomes as innovative strategies to enhance its dermal absorption.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iasi, Romania.
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.
View Article and Find Full Text PDFPharmaceutics
December 2024
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
Microneedles (MNs), composed of multiple micron-scale needle-like structures attached to a base, offer a minimally invasive approach for transdermal drug delivery by penetrating the stratum corneum and delivering therapeutic agents directly to the epidermis or dermis. Hydrogel microneedles (HMNs) stand out among various MN types due to their excellent biocompatibility, high drug-loading capacity, and tunable drug-release properties. This review systematically examines the matrix materials and fabrication methods of HMN systems, highlighting advancements in natural and synthetic polymers, and explores their applications in treating conditions such as wound healing, hair loss, cardiovascular diseases, and cancer.
View Article and Find Full Text PDFPharmaceutics
December 2024
Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.
Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China.
Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!