Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conducting polymers (CPs) possess unique electrical and electrochemical properties and hold great potential for different applications in the field of bioelectronics. However, the widespread implementation of CPs in this field has been critically hindered by their poor processibility. There are four key elements that determine the processibility of CPs, which are thermal tunability, chemical stability, solvent compatibility and mechanical robustness. Recent research efforts have focused on enhancing the processibility of these materials through pre- or post-synthesis chemical modifications, the fabrication of CP-based complexes and composites, and the adoption of additive manufacturing techniques. In this review, the physicochemical and structural properties that underlie the performance and processibility of CPs are examined. In addition, current research efforts to overcome technical limitations and broaden the potential applications of CPs in bioelectronics are discussed. STATEMENT OF SIGNIFICANCE: This review details the inherent properties of CPs that have hindered their use in additive manufacturing for the creation of 3D bioelectronics. A fundamental approach is presented with consideration of the chemical structure and how this contributes to their electrical, thermal and mechanical properties. The review then considers how manipulation of these properties has been addressed in the literature including areas where improvements can be made. Finally, the review details the use of CPs in additive manufacturing and the future scope for the use of CPs and their composites in the development of 3D bioelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2021.05.052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!