The role of PTEN signaling in synaptic function: Implications in autism spectrum disorder.

Neurosci Lett

Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. Electronic address:

Published: August 2021

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates several cellular processes including survival, proliferation, and metabolism. In the brain, PTEN is a key modulator of synaptic function, and is involved in regulating synaptogenesis, connectivity, and synaptic plasticity. Herein we discuss how alterations in PTEN can disturb these mechanisms, thus compromising normal synaptic function and consequently contributing to behavioral and cognitive phenotypes observed in autism spectrum disorder (ASD). As the role of PTEN in synaptic function is linked to ASD, a deeper understanding of this interaction will shed light on the pathological mechanisms involved in ASD, contributing to the development of new therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.136015DOI Listing

Publication Analysis

Top Keywords

synaptic function
16
role pten
8
autism spectrum
8
spectrum disorder
8
synaptic
5
pten signaling
4
signaling synaptic
4
function
4
function implications
4
implications autism
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in , have shown promising therapeutic effects against AD in previous studies. : To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice.

View Article and Find Full Text PDF

: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!