Fumonisin B1 (FB1) is a well-known mycotoxin produced by Fusarium spp. and has a wide range of dose-dependent toxic effects, including nephrotoxicity, hepatotoxicity, and neurotoxicity. This research illustrated that FB1 exerts its toxicity in the neuroblastoma cell line through a distinct cell-death pathway called parthanatos. FB1 can cause excessive DNA strand breaks, leading to poly (ADP-ribose) polymerase-1 (PARP-1) overactivation and cell death. In this study, we used 50 μM FB1-treated SH-SY5Y neuroblastoma cells to elucidate the signaling pathway of FB1-induced parthanatos. We observed that FB1-induced cell death is caspase-independent and accompanied by rapid activation of PARP-1, c-Jun N-terminal kinase activation, reactive oxygen species (ROS) generation, and intracellular calcium increase. FB1 treatment also increased endoplasmic reticulum stress due to the rapid increase of calcium ions and ROS levels. In addition, FB1 induced massive DNA damage and chromatin decondensation. We also observed that apoptosis-inducing factor nuclear translocation and PAR accumulation were associated with the necroptosis signal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2021.112326 | DOI Listing |
J Physiol
January 2025
Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.
View Article and Find Full Text PDFBiomarkers
January 2025
Pediatric Intensive Care Unit, Hospital Sant Joan de Déu-University of Barcelona, Barcelona, Spain.
PurposeChimeric antigen receptor (CAR) T-cell CD19 therapy has changed the treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia. It is frequently associated with potentially severe toxicities: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and admission to PICU is often required. Some biomarkers seem to correlate with CRS severity.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2025
Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
Introduction: Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration.
Areas Covered: This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV.
IUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFBI 1703880, a novel STimulator of INterferon Genes (STING) agonist, has demonstrated preclinical antitumor activity. As STING activation can upregulate programmed death ligand 1 and human leukocyte antigen in tumor cells, a combination of BI 1703880 and an anti-programmed cell death protein 1-antibody, such as ezabenlimab, may improve efficacy. This first-in-human phase Ia study (NCT05471856) is evaluating BI 1703880 plus ezabenlimab in patients with advanced solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!