Study Objectives: The study aimed to, for the first time, (1) compare sleep, circadian phase, and alertness of intensive care unit (ICU) nurses working rotating shifts with those predicted by a model of arousal dynamics; and (2) investigate how different environmental constraints affect predictions and agreement with data.

Methods: The model was used to simulate individual sleep-wake cycles, urinary 6-sulphatoxymelatonin (aMT6s) profiles, subjective sleepiness on the Karolinska Sleepiness Scale (KSS), and performance on a Psychomotor Vigilance Task (PVT) of 21 ICU nurses working day, evening, and night shifts. Combinations of individual shift schedules, forced wake time before/after work and lighting, were used as inputs to the model. Predictions were compared to empirical data. Simulations with self-reported sleep as an input were performed for comparison.

Results: All input constraints produced similar prediction for KSS, with 56%-60% of KSS scores predicted within ±1 on a day and 48%-52% on a night shift. Accurate prediction of an individual's circadian phase required individualized light input. Combinations including light information predicted aMT6s acrophase within ±1 h of the study data for 65% and 35%-47% of nurses on diurnal and nocturnal schedules. Minute-by-minute sleep-wake state overlap between the model and the data was between 81 ± 6% and 87 ± 5% depending on choice of input constraint.

Conclusions: The use of individualized environmental constraints in the model of arousal dynamics allowed for accurate prediction of alertness, circadian phase, and sleep for more than half of the nurses. Individual differences in physiological parameters will need to be accounted for in the future to further improve predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598188PMC
http://dx.doi.org/10.1093/sleep/zsab146DOI Listing

Publication Analysis

Top Keywords

circadian phase
16
model arousal
12
arousal dynamics
12
sleep circadian
8
shift schedules
8
icu nurses
8
nurses working
8
environmental constraints
8
accurate prediction
8
model
6

Similar Publications

Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.

View Article and Find Full Text PDF

Advanced sleep phase syndrome: Role of genetics and aging.

Handb Clin Neurol

January 2025

Sleep Medicine Center, Department of Neurology, Villa Serena Hospital, Città S. Angelo, Pescara, Italy; Villaserena Research Foundation, Città S. Angelo, Pescara, Italy.

Advanced sleep phase (ASP) is seldom brought to medical attention because many individuals easily adapt to their early chronotype, especially if it emerges before the age of 30 and is present in a first-degree relative. In this case, the disorder is considered familial (FASP) and is mostly discovered coincidentally in the presence of other sleep disorders, mainly obstructive sleep apnea syndrome (OSAS). The prevalence of FASP is currently estimated to be between 0.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Chronobiologic treatments for mood disorders.

Handb Clin Neurol

January 2025

Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy.

Chronotherapeutics are nonpharmacologic interventions whose development stems from investigations into sleep and circadian rhythm abnormalities associated with mood disorder. These therapies utilize controlled exposure to environmental cues (light, darkness) to regulate biologic rhythms. They encompass sleep-wake manipulations (partial/total sleep deprivation, sleep phase adjustment) and light therapy approaches.

View Article and Find Full Text PDF

Circadian rhythm disorders in the blind.

Handb Clin Neurol

January 2025

Neurology Department, Adsalutem Institute Sleep Medicine, Barcelona, Spain; Neurology Service, Sleep Disorders Unit, Hospital Universitari Sagrat Cor, Grupo Quirónsalud, Barcelona, Spain.

Non-24-h sleep-wake disorder in blind patients without light perception is an orphan circadian rhythm sleep-wake disorder and is extremely rare in sighted people. Non-24-h sleep-wake disorder is characterized by insomnia and daytime sleepiness alternating with asymptomatic episodes. The frequency of symptomatic periods depends on the daily desynchronization of endogenous circadian pattern of each patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!