Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192012 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1009009 | DOI Listing |
Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.
View Article and Find Full Text PDFInt J Womens Health
January 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin General Hospital, Bandung, Indonesia.
Background: Clear cell ovarian carcinoma (CCOC) is a type of epithelial ovarian cancer, representing 5-11% of ovarian cancers. CCOCs tend to occur in the fifth to seventh decades of life, with only 10% of cases occurring in the fourth decade. On the other side, papillary thyroid carcinoma is the most common histology type of thyroid carcinoma and is associated with locoregional spread.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
The lattice-strain engineering of high-entropy-oxide nanoparticles (HEO-NPs) is considered an effective strategy for achieving outstanding performance in various applications. However, lattice-strain engineering independent of the composition variation still confronts significant challenges, with existing modulation techniques difficult to achieve mass production. Herein, a novel continuous-flow synthesis strategy by flame spray pyrolysis (FSP) is proposed, which air varying flow rates is introduced for fast quenching to alter the cooling rate and control the lattice strain of HEO-NPs.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Health Policy and Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Family physician program is one of the effective reforms of the health system in Iran, but despite the implementation of this program in rural areas and the passage of ten years since its implementation in two provinces of Fars and Mazandaran, its implementation has faced problems. The aim of this study is to identify and prioritize implementation solutions related to the challenges of the family physician program in Iran.
Methods: This is a qualitative study using semi-structured interviews with 22 snowball-sampled experts and managers of basic health insurers to extract problems and executive solutions through coding and data analysis using Atlas Ti software and content analysis in the first stage.
Pharmaceutics
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!