Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reliable chemical identification of specific polymers in environmental samples represents a major challenge in plastic research, especially with the wide range of commercial polymers available, along with variable additive mixtures. Thermogravimetric analysis-Fourier transform infrared-gas chromatography-mass spectrometry (TGA-FTIR-GC-MS) offers a unique characterization platform that provides both physical and chemical properties of the analyzed polymers. This study presents a library of 11 polymers generated using virgin plastics and post-consumer products. TGA inflection points and mass of remaining residues following pyrolysis, in some cases, proved to be indicative of the polymer type. FTIR analysis of the evolved gas was able to differentiate between all but polypropylene (PP) and polyethylene (PE). Finally, GC-MS was able to differentiate between the unique chemical fingerprints of all but one polymer in the library. This library was then used to characterize real environmental samples of mesoplastics collected from beaches in the U.K. and South Africa. Unambiguous identification of the polymer types was achieved, with PE being the most frequently detected polymer and with South African samples indicating variations that potentially resulted from aging and weathering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c01085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!