Research into the glymphatic system reached an inflection point with steep trajectory in 2012 when it was formally recognized and named, but the historical roots for it are solid and deep, dating back to pioneers such as Cushing, Weed, and Dandy. We provide an overview of key discoveries of the glymphatic system, which promotes bulk flow of fluid and solutes throughout the brain parenchyma. We also discuss the lymphatic drainage of the central nervous system. Evidence is building that failure of the glymphatic system causes glymphedema in patients commonly managed by neurocritical care and neurosurgery specialists. We review research supporting this for decompressive craniectomy, subarachnoid hemorrhage, and normal-pressure hydrocephalus. We argue that it is time for a paradigm shift from the traditional model of cerebrospinal fluid circulation to a revised model that incorporates the glymphatic pathway and lymphatic clearance. These recent breakthroughs will inspire new therapeutic approaches to recognize, reverse, and restore glymphatic dysfunction and to leverage this pathway to deliver brain-wide therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578073 | PMC |
http://dx.doi.org/10.1007/s12028-021-01224-1 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
Studio Ozark Henry, Conterdijk 23, Wulpen, Belgium. Electronic address:
Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates.
The human microbiota constitute a very complex ecosystem of microorganisms inhabiting both the inside and outside of our bodies, in which health maintenance and disease modification are the main regulatory features. The recent explosion of microbiome research has begun to detail its important role in neurological health, particularly concerning cerebral small vessel disease (CSVD), a disorder associated with cognitive decline and vascular dementia. This narrative review represents state-of-the-art knowledge of the intimate, complex interplay between microbiota and brain health through the gut-brain axis (GBA) and the emerging role of glymphatic system dysfunction (glymphopathy) and circulating cell-derived microparticles (MPs) as mediators of these interactions.
View Article and Find Full Text PDFMol Brain
January 2025
Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Delirium is a common complication in elderly surgical patients and is associated with an increased risk of dementia. Although advanced age is a major risk factor, the mechanisms underlying postoperative delirium remain poorly understood. The glymphatic system, a brain-wide network of perivascular pathways, facilitates cerebrospinal fluid (CSF) flow and supports the clearance of metabolic waste.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.
Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.
Inferior frontal sulcal hyperintensities (IFSH) observed on fluid-attenuated inversion recovery (FLAIR) MRI have been proposed as indicators of elevated cerebrospinal fluid waste accumulation in cerebral small vessel disease (CSVD). However, to validate IFSH as a reliable imaging biomarker, further replication studies are required. The objective of this study was to investigate associations between IFSH and CSVD, and their potential repercussions, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!