MelB catalyzes the obligatory cotransport of melibiose with Na+, Li+, or H+. Crystal structure determination of the Salmonella typhimurium MelB (MelBSt) has revealed a typical major facilitator superfamily (MFS) fold at a periplasmic open conformation. Cooperative binding of Na+ and melibiose has been previously established. To determine why cotranslocation of sugar solute and cation is obligatory, we analyzed each binding in the thermodynamic cycle using three independent methods, including the determination of melting temperature by circular dichroism spectroscopy, heat capacity change (ΔCp), and regulatory phosphotransferase EIIAGlc binding with isothermal titration calorimetry (ITC). We found that MelBSt thermostability is increased by either substrate (Na+ or melibiose) and observed a cooperative effect of both substrates. ITC measurements showed that either binary formation yields a positive sign in the ΔCp, suggesting MelBSt hydration and a likely widening of the periplasmic cavity. Conversely, formation of a ternary complex yields negative values in ΔCp, suggesting MelBSt dehydration and cavity closure. Lastly, we observed that EIIAGlc, which has been suggested to trap MelBSt at an outward-open state, readily binds to the MelBSt apo state at an affinity similar to MelBSt/Na+. However, it has a suboptimal binding to the ternary state, implying that MelBSt in the ternary complex may be conformationally distant from the EIIAGlc-preferred outward-facing conformation. Our results consistently support the notion that binding of one substrate (Na+ or melibiose) favors MelBSt at open states, whereas the cooperative binding of both substrates triggers the alternating-access process, thus suggesting this conformational regulation could ensure the obligatory cotransport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200842 | PMC |
http://dx.doi.org/10.1085/jgp.202012710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!