Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using the recently established formalism of a worldline quantum field theory description of the classical scattering of two spinless black holes, we compute the far-field time-domain waveform of the gravitational waves produced in the encounter at leading order in the post-Minkowskian (weak field but generic velocity) expansion. We reproduce the previous results of Kovacs and Thorne in a highly economic way. Then, using the waveform, we extract the leading-order total radiated angular momentum and energy (including differential results). Our work may enable crucial improvements of gravitational-wave predictions in the regime of large relative velocities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.201103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!