High-speed air-breathing propulsion systems, such as solid fuel ramjets (SFRJ), are important for space exploration and national security. The development of SFRJ requires high-performance solid fuels with excellent mechanical and combustion properties. One of the current solid fuel candidates is composed of high-energy particles (e.g., boron (B)) and polymeric binder (e.g., hydroxyl-terminated polybutadiene (HTPB)). However, the opposite polarities of the boron surface and HTPB lead to poor B particle dispersion and distribution within HTPB. Herein, we demonstrate that the surface functionalization of B particles with nonpolar oleoyl chloride greatly improves the dispersion and distribution of B particles within HTPB. The improved particle dispersion is quantitatively visualized through X-ray computed tomography imaging, and the particle/matrix interaction is evaluated by dynamic mechanical analysis. The surface-functionalized B particles can be uniformly dispersed up to 40 wt % in HTPB, the highest mass loading reported to date. The surface-functionalized B (40 wt %)/HTPB composite exhibits a 63.3% higher Young's modulus, 87.5% higher tensile strength, 16.2% higher toughness, and 16.8% higher heat of combustion than pristine B (40 wt %)/HTPB. The surface functionalization of B particles provides an effective strategy for improving the efficacy and safety of B/HTPB solid fuels for future high-speed air-breathing vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c06727DOI Listing

Publication Analysis

Top Keywords

mechanical combustion
8
high-speed air-breathing
8
solid fuel
8
solid fuels
8
particle dispersion
8
dispersion distribution
8
surface functionalization
8
functionalization particles
8
particles
5
htpb
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!