Rhomboid pseudoproteases are catalytically inactive members of the rhomboid superfamily that modulate the traffic, turnover and activity of their target proteins. Rhomboid domain containing 2 () is a rhomboid family member overexpressed during mammary gland development and advanced stages of breast cancer. Interactome profiling studies have identified RHBDD2 as a novel binding partner of WW domain‑containing oxidoreductase (WWOX) protein. The present study characterized the RHBDD2‑WWOX interaction in proliferating and differentiated stages of normal mammary and breast cancer cells by co‑immunoprecipitation and confocal microscopy. Normal breast and proliferating cancer cells showed significantly increased mRNA levels compared with their differentiated counterparts. mRNA was primarily expressed in differentiated cells. WWOX co‑precipitated with RHBDD2, indicating that endogenous RHBDD2 and WWOX were physically associated in normal and breast cancer proliferating cells compared with the differentiated stage. Co‑localization assays corroborated the co‑immunoprecipitation results, demonstrating the RHBDD2‑WWOX protein interaction in normal and proliferating breast cancer cells. RHBDD2 harbors a conserved LPPY motif at the C‑terminus region that directly interacted with the WW domains of WWOX. Since WWOX serves as an inhibitor of the TGFβ/SMAD3 signaling pathway in breast cells, modulation of SMAD3 target genes was analyzed in proliferating and differentiated mammary cells and in silencing assays. Increased expression levels of SMAD3‑regulated genes were detected in proliferating cells compared with their differentiated counterparts. Follistatin and angiopoietin‑like 4 mRNA was significantly downregulated in transiently silenced cells compared with scrambled control small interfering RNA. Based on these results, WWOX was suggested to be a novel RHBDD2 target protein involved in the modulation of breast epithelial cell proliferation and differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2021.8108 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!