The ability to determine the identity of specific proteins is a critical challenge in many areas of cellular and molecular biology, and in medical diagnostics. Here, we present a macine learning aided microfluidic protein characterisation strategy that within a few minutes generates a three-dimensional fingerprint of a protein sample indicative of its amino acid composition and size and, thereby, creates a unique signature for the protein. By acquiring such multidimensional fingerprints for a set of ten proteins and using machine learning approaches to classify the fingerprints, we demonstrate that this strategy allows proteins to be classified at a high accuracy, even though classification using a single dimension is not possible. Moreover, we show that the acquired fingerprints correlate with the amino acid content of the samples, which makes it is possible to identify proteins directly from their sequence without requiring any prior knowledge about the fingerprints. These findings suggest that such a multidimensional profiling strategy can lead to the development of a novel method for protein identification in a microfluidic format.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314522 | PMC |
http://dx.doi.org/10.1039/d0lc01148g | DOI Listing |
Cell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Cardiovascular Medicine, Second People's Hospital of Anhui Province, Hefei, China.
Objective: To explore the prognostic significance of Sestrin-2 and Galectin-3 levels in atrial fibrillation complicated by left atrial remodelling, aiming to offer novel insights for prevention, treatment, and follow-up strategies.
Study Design: Analytical study. Place and Duration of the Study: Department of Cardiology, Second People's Hospital of Anhui Province, Hefei, China, from January 2021 to December 2023.
Anal Methods
November 2017
Institute of Biomedical Chemistry, ul. Pogodinskaya, 10, Moscow, Russia.
A combined AFM/MS method was employed for protein registration in solution. This method is based on reversible specific capturing of a target protein from a large volume of analyzed solution onto a small sensor area of a chip with immobilized aptamer ligands. Fishing of the core antigen of hepatitis C virus (HCVcoreAg) from 10 M solution of this protein in buffer was carried out.
View Article and Find Full Text PDFBackground: This study aimed to explore the clinical and pathological features of patients with diabetic kidney disease (DKD), with and without non-diabetic kidney disease (NDKD), through a retrospective analysis. The objective was to provide clinical insights for accurate identification.
Methods: A retrospective analysis of 235 patients admitted to the Department of Nephrology at Hangzhou Hospital of Traditional Chinese Medicine was conducted between July 2014 and December 2022.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!