The pace of scientific progress over the past several decades within the biological, drug development, and the digital realm has been remarkable. The'omics revolution has enabled a better understanding of the biological basis of disease, unlocking the possibility of new products such as gene and cell therapies which offer novel patient centric solutions. Innovative approaches to clinical trial designs promise greater efficiency, and in recent years, scientific collaborations, and consortia have been developing novel approaches to leverage new sources of evidence such as real-world data, patient experience data, and biomarker data. Alongside this there have been great strides in digital innovation. Cloud computing has become mainstream and the internet of things and blockchain technology have become a reality. These examples of transformation stand in sharp contrast to the current inefficient approach for regulatory submission, review, and approval of medicinal products. This process has not fundamentally changed since the beginning of medicine regulation in the late 1960s. Fortunately, progressive initiatives are emerging that will enrich and streamline regulatory decision making and deliver patient centric therapies, if they are successful in transforming the current transactional construct and harnessing scientific and technological advances. Such a radical transformation will not be simple for both regulatory authorities and company sponsors, nor will progress be linear. We examine the shortcomings of the current system with its entrenched and variable business processes, offer examples of progress as catalysts for change, and make the case for a new cloud based model. To optimize navigation toward this reality we identify implications and regulatory design questions which must be addressed. We conclude that a new model is possible and is slowly emerging through cumulative change initiatives that question, challenge, and redesign best practices, roles, and responsibilities, and that this must be combined with adaptation of behaviors and acquisition of new skills.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183468PMC
http://dx.doi.org/10.3389/fmed.2021.660808DOI Listing

Publication Analysis

Top Keywords

digital innovation
8
regulatory submission
8
submission review
8
patient centric
8
regulatory
6
innovation medicinal
4
medicinal product
4
product regulatory
4
review approvals
4
approvals create
4

Similar Publications

Data and AI-driven synthetic binding protein discovery.

Trends Pharmacol Sci

January 2025

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing 401329, China. Electronic address:

Synthetic binding proteins (SBPs) are a class of protein binders that are artificially created and do not exist naturally. Their broad applications in tackling challenges of research, diagnostics, and therapeutics have garnered significant interest. Traditional protein engineering is pivotal to the discovery of SBPs.

View Article and Find Full Text PDF

Digital health technologies enabling the transition from pregnancy to early parenthood: A scoping review.

Z Evid Fortbild Qual Gesundhwes

January 2025

Department Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Siegen, Germany.

Background: Pregnant women and their families, especially those navigating chronic illness or challenging life situations, often seek information and counseling. The pregnancy period and the transition to parenthood can exacerbate these circumstances, leaving families particularly vulnerable. Addressing stressful situations becomes a hurdle in this context.

View Article and Find Full Text PDF

Aim: To explore nursing students' perceptions and experiences of using large language models and identify the facilitators and barriers by applying the Theory of Planned Behaviour.

Design: A qualitative descriptive design.

Method: Between January and June 2024, we conducted individual semi-structured online interviews with 24 nursing students from 13 medical universities across China.

View Article and Find Full Text PDF

MiRNAs and extracellular vesicles in psychiatry: Potential biomarkers, therapeutic advances, and animal models.

Eur Neuropsychopharmacol

January 2025

Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Catalonia, Spain; Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain. Electronic address:

View Article and Find Full Text PDF

Plasma cell-free DNA (cfDNA) analysis to track estrogen receptor 1 (ESR1) mutations is highly beneficial for the identification of tumor molecular dynamics and the improvement of personalized treatments for patients with metastatic breast cancer (MBC). Plasma-cfDNA is, up to now, the most frequent liquid biopsy analyte used to evaluate ESR1 mutational status. Circulating tumor cell (CTC) enumeration and molecular characterization analysis provides important clinical information in patients with MBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!