Unlabelled: Late leaf spot (LLS) caused by fungi is generally more destructive and difficult to control than early leaf spot. The aim of this study was to decipher biochemical defense mechanism in groundnut genotypes against by identifying resistance specific biomarkers and metabolic pathways induced during host-pathogen interaction. Metabolomics of non-infected and infected leaves of moderately resistant (GPBD4 and ICGV86590), resistant (KDG128 and RHRG06083) and susceptible (GG20, JL24 and TMV2) genotypes was carried out at 5 days after infection (65 days after sowing). Non-targeted metabolite analysis using GC-MS revealed total 77 metabolites including carbohydrates, sugar alcohols, amino acids, fatty acids, polyamines, phenolics, terpenes and sterols. Variable importance in projection (VIP) measure of partial least squares-discriminant analysis (PLS-DA) showed that resistant and moderately resistant genotypes possessed higher intensities of ribonic acid, cinnamic acid, malic acid, squalene, xylulose, galactose, fructose, glucose, β-amyrin and hydroquinone while susceptible genotypes had higher amount of gluconic acid 2-methoxime, ribo-hexose-3-ulose and gluconic acid. Heat map analysis showed that resistant genotypes had higher intensities of β-amyrin, hydroquinone in non-infected and malic acid, squalene, putrescine and 2,3,4-trihydroxybutyric acid in infected leaves. Dendrogram analysis further separated resistant genotypes in the same cluster along with infected moderately resistant genotypes. The most significant pathways identified are: linoleic acid metabolism, flavone and flavonol biosynthesis, cutin, suberin and wax biosynthesis, pentose and glucuronate interconversions, starch and sucrose metabolism, stilbenoid biosynthesis and ascorbate and aldarate metabolism. Targeted metabolite analysis further confirmed that resistant genotypes possessed higher content of primary metabolites sucrose, glucose, fructose, malic acid and citric acid. Moreover, resistant genotypes possessed higher content of salicylic, coumaric, ferulic, cinnamic, gallic acid (phenolic acids) and kaempferol, quercetin and catechin (flavonols). Thus metabolites having higher accumulation in resistant genotypes can be used as biomarkers for screening of LSS resistant germplasm. These results unravel that higher amount of primary metabolites leads to stimulate the accumulation of more amounts of secondary metabolites such as phenolic acid, flavanols, stilbenes and terpenoids (squalene and β-amyrin) biosynthesis which are ultimately involved in defense mechanism against LLS pathogen.

Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-021-00985-5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140181PMC
http://dx.doi.org/10.1007/s12298-021-00985-5DOI Listing

Publication Analysis

Top Keywords

resistant genotypes
28
leaf spot
12
moderately resistant
12
genotypes possessed
12
possessed higher
12
acid
12
malic acid
12
resistant
11
genotypes
10
late leaf
8

Similar Publications

Background: To better understand factors associated with virologic response, we retrospectively characterized the HIV proviruses of 7 people with HIV who received long-acting cabotegravir/rilpivirine (CAB/RPV-LA) and were selected according to the following criteria: virologic control achieved despite a history of viral replication on 1 or both corresponding antiretroviral classes (n = 6) and virologic failure (VF) after CAB/RPV-LA initiation (n = 1).

Methods: Last available blood samples before the initiation of CAB/RPV-LA were analyzed retrospectively. Near full-length HIV DNA genome haplotypes were inferred from Nanopore sequencing by the in vivo Genome Diversity Analyzer to search for archived drug resistance mutations (DRMs) and evaluate the frequency and intactness of proviruses harboring DRMs.

View Article and Find Full Text PDF

Background: The development of superior summer maize hybrids with high-yield potential and essential agronomic traits, such as resistance to lodging, is crucial for ensuring the sustainability of maize cultivation. However, the task of identifying and breeding genotypes that exhibit exceptional performance and stability across multiple environment conditions, while considering a wide range of traits, is challenging. Given the backdrop of global climate change, understanding which climate variables and soil properties most significantly impact environmental similarity is essential for selecting hybrids with improved adaptability to regions with diverse climatic and soil conditions.

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

Introduction: Some studies have demonstrated the effect of the rs7903146 genetic variant on weight response after different dietary strategies. The objective of our study was to evaluate the role of this genetic variant of the TCF7L2 gene on weight loss and diabetes mellitus progression following a partial meal replacement (pMR) hypocaloric diet.

Methods: We conducted an interventional study in 214 subjects with obesity and a body mass index (BMI) > 35 kg/m².

View Article and Find Full Text PDF

In critically ill patients, the occurrence of multidrug-resistant infection is a significant concern, given its ability to acquire multidrug-resistant, form biofilms and secrete toxic effectors. In Brazil, limited data are available regarding the prevalence of dissemination, and the impact of the type III secretion system (T3SS) on toxin production and biofilm formation in clinical isolates of . This study investigates the dissemination of virulent harbouring the and genes, the presence of T3SS genes and their biofilm-forming capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!