Modelling speech motor programming and apraxia of speech in the DIVA/GODIVA neurocomputational framework.

Aphasiology

Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA.

Published: May 2020

Background: The Directions Into Velocities of Articulators (DIVA) model and its partner, the Gradient Order DIVA (GODIVA) model, provide neurobiologically grounded, computational accounts of speech motor control and motor sequencing, with applications for the study and treatment of neurological motor speech disorders.

Aims: In this review, we provide an overview of the DIVA and GODIVA models and how they explain the interface between phonological and motor planning systems to build on previous models and provide a mechanistic accounting of apraxia of speech (AOS), a disorder of speech motor programming.

Main Contribution: Combined, the DIVA and GODIVA models account for both the segmental and suprasegmental features that define AOS via damage to (i) a speech sound map, hypothesized to reside in left ventral premotor cortex, (ii) a phonological content buffer hypothesized to reside in left posterior inferior frontal sulcus, and/or (iii) the axonal projections between these regions. This account is in line with a large body of behavioural work, and it unifies several prior theoretical accounts of AOS.

Conclusions: The DIVA and GODIVA models provide an integrated framework for the generation and testing of both behavioural and neuroimaging hypotheses about the underlying neural mechanisms responsible for motor programming in typical speakers and in speakers with AOS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183977PMC
http://dx.doi.org/10.1080/02687038.2020.1765307DOI Listing

Publication Analysis

Top Keywords

diva godiva
16
speech motor
12
godiva models
12
motor programming
8
apraxia speech
8
models provide
8
hypothesized reside
8
reside left
8
motor
7
speech
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!