The time-varying power spectrum of a time series process is a bivariate function that quantifies the magnitude of oscillations at different frequencies and times. To obtain low-dimensional, parsimonious measures from this functional parameter, applied researchers consider collapsed measures of power within local bands that partition the frequency space. Frequency bands commonly used in the scientific literature were historically derived, but they are not guaranteed to be optimal or justified for adequately summarizing information from a given time series process under current study. There is a dearth of methods for empirically constructing statistically optimal bands for a given signal. The goal of this article is to provide a standardized, unifying approach for deriving and analyzing customized frequency bands. A consistent, frequency-domain, iterative cumulative sum based scanning procedure is formulated to identify frequency bands that best preserve nonstationary information. A formal hypothesis testing procedure is also developed to test which, if any, frequency bands remain stationary. The proposed method is used to analyze heart rate variability of a patient during sleep and uncovers a refined partition of frequency bands that best summarize the time-varying power spectrum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186526PMC
http://dx.doi.org/10.1080/01621459.2019.1671199DOI Listing

Publication Analysis

Top Keywords

frequency bands
20
time series
12
time-varying power
8
power spectrum
8
series process
8
partition frequency
8
bands best
8
bands
7
frequency
6
empirical frequency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!