A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. | LitMetric

The electrification of heavy-duty transport and aviation will require new strategies to increase the energy density of electrode materials. The use of anionic redox represents one possible approach to meeting this ambitious target. However, questions remain regarding the validity of the O/O oxygen redox paradigm, and alternative explanations for the origin of the anionic capacity have been proposed, because the electronic orbitals associated with redox reactions cannot be measured by standard experiments. Here, using high-energy X-ray Compton measurements together with first-principles modelling, we show how the electronic orbital that lies at the heart of the reversible and stable anionic redox activity can be imaged and visualized, and its character and symmetry determined. We find that differential changes in the Compton profile with lithium-ion concentration are sensitive to the phase of the electronic wave function, and carry signatures of electrostatic and covalent bonding effects. Our study not only provides a picture of the workings of a lithium-rich battery at the atomic scale, but also suggests pathways to improving existing battery materials and designing new ones.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03509-zDOI Listing

Publication Analysis

Top Keywords

lithium-rich battery
8
battery materials
8
anionic redox
8
tomographic reconstruction
4
reconstruction oxygen
4
oxygen orbitals
4
orbitals lithium-rich
4
materials electrification
4
electrification heavy-duty
4
heavy-duty transport
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!